Forked from
Iris / stdpp
2584 commits behind the upstream repository.
-
Robbert Krebbers authored
Also, make our redefinition of done more robust under different orders of Importing modules.
Robbert Krebbers authoredAlso, make our redefinition of done more robust under different orders of Importing modules.
natmap.v 15.32 KiB
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This files implements a type [natmap A] of finite maps whose keys range
over Coq's data type of unary natural numbers [nat]. The implementation equips
a list with a proof of canonicity. *)
From stdpp Require Import fin_maps mapset.
Notation natmap_raw A := (list (option A)).
Definition natmap_wf {A} (l : natmap_raw A) :=
match last l with None => True | Some x => is_Some x end.
Instance natmap_wf_pi {A} (l : natmap_raw A) : ProofIrrel (natmap_wf l).
Proof. unfold natmap_wf. case_match; apply _. Qed.
Lemma natmap_wf_inv {A} (o : option A) (l : natmap_raw A) :
natmap_wf (o :: l) → natmap_wf l.
Proof. by destruct l. Qed.
Lemma natmap_wf_lookup {A} (l : natmap_raw A) :
natmap_wf l → l ≠ [] → ∃ i x, mjoin (l !! i) = Some x.
Proof.
intros Hwf Hl. induction l as [|[x|] l IH]; simpl; [done| |].
{ exists 0. simpl. eauto. }
destruct IH as (i&x&?); eauto using natmap_wf_inv; [|by exists (S i), x].
intros ->. by destruct Hwf.
Qed.
Record natmap (A : Type) : Type := NatMap {
natmap_car : natmap_raw A;
natmap_prf : natmap_wf natmap_car
}.
Arguments NatMap {_} _ _.
Arguments natmap_car {_} _.
Arguments natmap_prf {_} _.
Lemma natmap_eq {A} (m1 m2 : natmap A) :
m1 = m2 ↔ natmap_car m1 = natmap_car m2.
Proof.
split; [by intros ->|intros]; destruct m1 as [t1 ?], m2 as [t2 ?].
simplify_equality'; f_equal; apply proof_irrel.
Qed.
Global Instance natmap_eq_dec `{∀ x y : A, Decision (x = y)}
(m1 m2 : natmap A) : Decision (m1 = m2) :=
match decide (natmap_car m1 = natmap_car m2) with
| left H => left (proj2 (natmap_eq m1 m2) H)
| right H => right (H ∘ proj1 (natmap_eq m1 m2))
end.
Instance natmap_empty {A} : Empty (natmap A) := NatMap [] I.
Instance natmap_lookup {A} : Lookup nat A (natmap A) := λ i m,
let (l,_) := m in mjoin (l !! i).
Fixpoint natmap_singleton_raw {A} (i : nat) (x : A) : natmap_raw A :=
match i with 0 => [Some x]| S i => None :: natmap_singleton_raw i x end.
Lemma natmap_singleton_wf {A} (i : nat) (x : A) :
natmap_wf (natmap_singleton_raw i x).
Proof. unfold natmap_wf. induction i as [|[]]; simplify_equality'; eauto. Qed.
Lemma natmap_lookup_singleton_raw {A} (i : nat) (x : A) :
mjoin (natmap_singleton_raw i x !! i) = Some x.
Proof. induction i; simpl; auto. Qed.
Lemma natmap_lookup_singleton_raw_ne {A} (i j : nat) (x : A) :
i ≠ j → mjoin (natmap_singleton_raw i x !! j) = None.
Proof. revert j; induction i; intros [|?]; simpl; auto with congruence. Qed.
Hint Rewrite @natmap_lookup_singleton_raw : natmap.
Definition natmap_cons_canon {A} (o : option A) (l : natmap_raw A) :=
match o, l with None, [] => [] | _, _ => o :: l end.
Lemma natmap_cons_canon_wf {A} (o : option A) (l : natmap_raw A) :
natmap_wf l → natmap_wf (natmap_cons_canon o l).
Proof. unfold natmap_wf, last. destruct o, l; simpl; eauto. Qed.
Lemma natmap_cons_canon_O {A} (o : option A) (l : natmap_raw A) :
mjoin (natmap_cons_canon o l !! 0) = o.
Proof. by destruct o, l. Qed.
Lemma natmap_cons_canon_S {A} (o : option A) (l : natmap_raw A) i :
natmap_cons_canon o l !! S i = l !! i.
Proof. by destruct o, l. Qed.
Hint Rewrite @natmap_cons_canon_O @natmap_cons_canon_S : natmap.
Definition natmap_alter_raw {A} (f : option A → option A) :
nat → natmap_raw A → natmap_raw A :=
fix go i l {struct l} :=
match l with
| [] =>
match f None with
| Some x => natmap_singleton_raw i x | None => []
end
| o :: l =>
match i with
| 0 => natmap_cons_canon (f o) l | S i => natmap_cons_canon o (go i l)
end
end.
Lemma natmap_alter_wf {A} (f : option A → option A) i l :
natmap_wf l → natmap_wf (natmap_alter_raw f i l).
Proof.
revert i. induction l; [intro | intros [|?]]; simpl; repeat case_match;
eauto using natmap_singleton_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Instance natmap_alter {A} : PartialAlter nat A (natmap A) := λ f i m,
let (l,Hl) := m in NatMap _ (natmap_alter_wf f i l Hl).
Lemma natmap_lookup_alter_raw {A} (f : option A → option A) i l :
mjoin (natmap_alter_raw f i l !! i) = f (mjoin (l !! i)).
Proof.
revert i. induction l; intros [|?]; simpl; repeat case_match; simpl;
autorewrite with natmap; auto.
Qed.
Lemma natmap_lookup_alter_raw_ne {A} (f : option A → option A) i j l :
i ≠ j → mjoin (natmap_alter_raw f i l !! j) = mjoin (l !! j).
Proof.
revert i j. induction l; intros [|?] [|?] ?; simpl;
repeat case_match; simpl; autorewrite with natmap; auto with congruence.
rewrite natmap_lookup_singleton_raw_ne; congruence.
Qed.
Definition natmap_omap_raw {A B} (f : A → option B) :
natmap_raw A → natmap_raw B :=
fix go l :=
match l with [] => [] | o :: l => natmap_cons_canon (o ≫= f) (go l) end.
Lemma natmap_omap_raw_wf {A B} (f : A → option B) l :
natmap_wf l → natmap_wf (natmap_omap_raw f l).
Proof. induction l; simpl; eauto using natmap_cons_canon_wf, natmap_wf_inv. Qed.
Lemma natmap_lookup_omap_raw {A B} (f : A → option B) l i :
mjoin (natmap_omap_raw f l !! i) = mjoin (l !! i) ≫= f.
Proof.
revert i. induction l; intros [|?]; simpl; autorewrite with natmap; auto.
Qed.
Hint Rewrite @natmap_lookup_omap_raw : natmap.
Global Instance natmap_omap: OMap natmap := λ A B f m,
let (l,Hl) := m in NatMap _ (natmap_omap_raw_wf f _ Hl).
Definition natmap_merge_raw {A B C} (f : option A → option B → option C) :
natmap_raw A → natmap_raw B → natmap_raw C :=
fix go l1 l2 :=
match l1, l2 with
| [], l2 => natmap_omap_raw (f None ∘ Some) l2
| l1, [] => natmap_omap_raw (flip f None ∘ Some) l1
| o1 :: l1, o2 :: l2 => natmap_cons_canon (f o1 o2) (go l1 l2)
end.
Lemma natmap_merge_wf {A B C} (f : option A → option B → option C) l1 l2 :
natmap_wf l1 → natmap_wf l2 → natmap_wf (natmap_merge_raw f l1 l2).
Proof.
revert l2. induction l1; intros [|??]; simpl;
eauto using natmap_omap_raw_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Lemma natmap_lookup_merge_raw {A B C} (f : option A → option B → option C)
l1 l2 i : f None None = None →
mjoin (natmap_merge_raw f l1 l2 !! i) = f (mjoin (l1 !! i)) (mjoin (l2 !! i)).
Proof.
intros. revert i l2. induction l1; intros [|?] [|??]; simpl;
autorewrite with natmap; auto;
match goal with |- context [?o ≫= _] => by destruct o end.
Qed.
Instance natmap_merge: Merge natmap := λ A B C f m1 m2,
let (l1, Hl1) := m1 in let (l2, Hl2) := m2 in
NatMap (natmap_merge_raw f l1 l2) (natmap_merge_wf _ _ _ Hl1 Hl2).
Fixpoint natmap_to_list_raw {A} (i : nat) (l : natmap_raw A) : list (nat * A) :=
match l with
| [] => []
| None :: l => natmap_to_list_raw (S i) l
| Some x :: l => (i,x) :: natmap_to_list_raw (S i) l
end.
Lemma natmap_elem_of_to_list_raw_aux {A} j (l : natmap_raw A) i x :
(i,x) ∈ natmap_to_list_raw j l ↔ ∃ i', i = i' + j ∧ mjoin (l !! i') = Some x.
Proof.
split.
* revert j. induction l as [|[y|] l IH]; intros j; simpl.
+ by rewrite elem_of_nil.
+ rewrite elem_of_cons. intros [?|?]; simplify_equality.
- by exists 0.
- destruct (IH (S j)) as (i'&?&?); auto.
exists (S i'); simpl; auto with lia.
+ intros. destruct (IH (S j)) as (i'&?&?); auto.
exists (S i'); simpl; auto with lia.
* intros (i'&?&Hi'). subst. revert i' j Hi'.
induction l as [|[y|] l IH]; intros i j ?; simpl.
+ done.
+ destruct i as [|i]; simplify_equality'; [left|].
right. rewrite <-Nat.add_succ_r. by apply (IH i (S j)).
+ destruct i as [|i]; simplify_equality'.
rewrite <-Nat.add_succ_r. by apply (IH i (S j)).
Qed.
Lemma natmap_elem_of_to_list_raw {A} (l : natmap_raw A) i x :
(i,x) ∈ natmap_to_list_raw 0 l ↔ mjoin (l !! i) = Some x.
Proof.
rewrite natmap_elem_of_to_list_raw_aux. setoid_rewrite Nat.add_0_r.
naive_solver.
Qed.
Lemma natmap_to_list_raw_nodup {A} i (l : natmap_raw A) :
NoDup (natmap_to_list_raw i l).
Proof.
revert i. induction l as [|[?|] ? IH]; simpl; try constructor; auto.
rewrite natmap_elem_of_to_list_raw_aux. intros (?&?&?). lia.
Qed.
Instance natmap_to_list {A} : FinMapToList nat A (natmap A) := λ m,
let (l,_) := m in natmap_to_list_raw 0 l.
Definition natmap_map_raw {A B} (f : A → B) : natmap_raw A → natmap_raw B :=
fmap (fmap f).
Lemma natmap_map_wf {A B} (f : A → B) l :
natmap_wf l → natmap_wf (natmap_map_raw f l).
Proof.
unfold natmap_map_raw, natmap_wf. rewrite fmap_last.
destruct (last l). by apply fmap_is_Some. done.
Qed.
Lemma natmap_lookup_map_raw {A B} (f : A → B) i l :
mjoin (natmap_map_raw f l !! i) = f <$> mjoin (l !! i).
Proof.
unfold natmap_map_raw. rewrite list_lookup_fmap. by destruct (l !! i).
Qed.
Instance natmap_map: FMap natmap := λ A B f m,
let (l,Hl) := m in NatMap (natmap_map_raw f l) (natmap_map_wf _ _ Hl).
Instance: FinMap nat natmap.
Proof.
split.
* unfold lookup, natmap_lookup. intros A [l1 Hl1] [l2 Hl2] E.
apply natmap_eq. revert l2 Hl1 Hl2 E. simpl.
induction l1 as [|[x|] l1 IH]; intros [|[y|] l2] Hl1 Hl2 E; simpl in *.
+ done.
+ by specialize (E 0).
+ destruct (natmap_wf_lookup (None :: l2)) as (i&?&?); auto with congruence.
+ by specialize (E 0).
+ f_equal. apply (E 0). apply IH; eauto using natmap_wf_inv.
intros i. apply (E (S i)).
+ by specialize (E 0).
+ destruct (natmap_wf_lookup (None :: l1)) as (i&?&?); auto with congruence.
+ by specialize (E 0).
+ f_equal. apply IH; eauto using natmap_wf_inv. intros i. apply (E (S i)).
* done.
* intros ?? [??] ?. apply natmap_lookup_alter_raw.
* intros ?? [??] ??. apply natmap_lookup_alter_raw_ne.
* intros ??? [??] ?. apply natmap_lookup_map_raw.
* intros ? [??]. by apply natmap_to_list_raw_nodup.
* intros ? [??] ??. by apply natmap_elem_of_to_list_raw.
* intros ??? [??] ?. by apply natmap_lookup_omap_raw.
* intros ????? [??] [??] ?. by apply natmap_lookup_merge_raw.
Qed.
Fixpoint strip_Nones {A} (l : list (option A)) : list (option A) :=
match l with None :: l => strip_Nones l | _ => l end.
Lemma list_to_natmap_wf {A} (l : list (option A)) :
natmap_wf (reverse (strip_Nones (reverse l))).
Proof.
unfold natmap_wf. rewrite last_reverse.
induction (reverse l) as [|[]]; simpl; eauto.
Qed.
Definition list_to_natmap {A} (l : list (option A)) : natmap A :=
NatMap (reverse (strip_Nones (reverse l))) (list_to_natmap_wf l).
Lemma list_to_natmap_spec {A} (l : list (option A)) i :
list_to_natmap l !! i = mjoin (l !! i).
Proof.
unfold lookup at 1, natmap_lookup, list_to_natmap; simpl.
rewrite <-(reverse_involutive l) at 2. revert i.
induction (reverse l) as [|[x|] l' IH]; intros i; simpl; auto.
rewrite reverse_cons, IH. clear IH. revert i.
induction (reverse l'); intros [|?]; simpl; auto.
Qed.
(** Finally, we can construct sets of [nat]s satisfying extensional equality. *)
Notation natset := (mapset natmap).
Instance natmap_dom {A} : Dom (natmap A) natset := mapset_dom.
Instance: FinMapDom nat natmap natset := mapset_dom_spec.
(* Fixpoint avoids this definition from being unfolded *)
Fixpoint of_bools (βs : list bool) : natset :=
let f (β : bool) := if β then Some () else None in
Mapset $ list_to_natmap $ f <$> βs.
Definition to_bools (sz : nat) (X : natset) : list bool :=
let f (mu : option ()) := match mu with Some _ => true | None => false end in
resize sz false $ f <$> natmap_car (mapset_car X).
Lemma of_bools_unfold βs :
let f (β : bool) := if β then Some () else None in
of_bools βs = Mapset $ list_to_natmap $ f <$> βs.
Proof. by destruct βs. Qed.
Lemma elem_of_of_bools βs i : i ∈ of_bools βs ↔ βs !! i = Some true.
Proof.
rewrite of_bools_unfold; unfold elem_of, mapset_elem_of; simpl.
rewrite list_to_natmap_spec, list_lookup_fmap.
destruct (βs !! i) as [[]|]; compute; intuition congruence.
Qed.
Lemma of_bools_union βs1 βs2 :
length βs1 = length βs2 →
of_bools (βs1 ||* βs2) = of_bools βs1 ∪ of_bools βs2.
Proof.
rewrite <-Forall2_same_length; intros Hβs.
apply elem_of_equiv_L. intros i. rewrite elem_of_union, !elem_of_of_bools.
revert i. induction Hβs as [|[] []]; intros [|?]; naive_solver.
Qed.
Lemma to_bools_length (X : natset) sz : length (to_bools sz X) = sz.
Proof. apply resize_length. Qed.
Lemma lookup_to_bools_ge sz X i : sz ≤ i → to_bools sz X !! i = None.
Proof. by apply lookup_resize_old. Qed.
Lemma lookup_to_bools sz X i β :
i < sz → to_bools sz X !! i = Some β ↔ (i ∈ X ↔ β = true).
Proof.
unfold to_bools, elem_of, mapset_elem_of, lookup at 2, natmap_lookup; simpl.
intros. destruct (mapset_car X) as [l ?]; simpl.
destruct (l !! i) as [mu|] eqn:Hmu; simpl.
{ rewrite lookup_resize, list_lookup_fmap, Hmu
by (rewrite ?fmap_length; eauto using lookup_lt_Some).
destruct mu as [[]|], β; simpl; intuition congruence. }
rewrite lookup_resize_new by (rewrite ?fmap_length;
eauto using lookup_ge_None_1); destruct β; intuition congruence.
Qed.
Lemma lookup_to_bools_true sz X i :
i < sz → to_bools sz X !! i = Some true ↔ i ∈ X.
Proof. intros. rewrite lookup_to_bools by done. intuition. Qed.
Lemma lookup_to_bools_false sz X i :
i < sz → to_bools sz X !! i = Some false ↔ i ∉ X.
Proof. intros. rewrite lookup_to_bools by done. naive_solver. Qed.
Lemma to_bools_union sz X1 X2 :
to_bools sz (X1 ∪ X2) = to_bools sz X1 ||* to_bools sz X2.
Proof.
apply list_eq; intros i; rewrite lookup_zip_with.
destruct (decide (i < sz)); [|by rewrite !lookup_to_bools_ge by lia].
apply option_eq; intros β.
rewrite lookup_to_bools, elem_of_union by done; intros.
destruct (decide (i ∈ X1)), (decide (i ∈ X2)); repeat first
[ rewrite (λ X H, proj2 (lookup_to_bools_true sz X i H)) by done
| rewrite (λ X H, proj2 (lookup_to_bools_false sz X i H)) by done];
destruct β; naive_solver.
Qed.
Lemma to_of_bools βs sz : to_bools sz (of_bools βs) = resize sz false βs.
Proof.
apply list_eq; intros i. destruct (decide (i < sz));
[|by rewrite lookup_to_bools_ge, lookup_resize_old by lia].
apply option_eq; intros β.
rewrite lookup_to_bools, elem_of_of_bools by done.
destruct (decide (i < length βs)).
{ rewrite lookup_resize by done.
destruct (lookup_lt_is_Some_2 βs i) as [[]]; destruct β; naive_solver. }
rewrite lookup_resize_new, lookup_ge_None_2 by lia. destruct β; naive_solver.
Qed.
(** A [natmap A] forms a stack with elements of type [A] and possible holes *)
Definition natmap_push {A} (o : option A) (m : natmap A) : natmap A :=
let (l,Hl) := m in NatMap _ (natmap_cons_canon_wf o l Hl).
Definition natmap_pop_raw {A} (l : natmap_raw A) : natmap_raw A := tail l.
Lemma natmap_pop_wf {A} (l : natmap_raw A) :
natmap_wf l → natmap_wf (natmap_pop_raw l).
Proof. destruct l; simpl; eauto using natmap_wf_inv. Qed.
Definition natmap_pop {A} (m : natmap A) : natmap A :=
let (l,Hl) := m in NatMap _ (natmap_pop_wf _ Hl).
Lemma lookup_natmap_push_O {A} o (m : natmap A) : natmap_push o m !! 0 = o.
Proof. by destruct o, m as [[|??]]. Qed.
Lemma lookup_natmap_push_S {A} o (m : natmap A) i :
natmap_push o m !! S i = m !! i.
Proof. by destruct o, m as [[|??]]. Qed.
Lemma lookup_natmap_pop {A} (m : natmap A) i : natmap_pop m !! i = m !! S i.
Proof. by destruct m as [[|??]]. Qed.
Lemma natmap_push_pop {A} (m : natmap A) :
natmap_push (m !! 0) (natmap_pop m) = m.
Proof.
apply map_eq. intros i. destruct i.
* by rewrite lookup_natmap_push_O.
* by rewrite lookup_natmap_push_S, lookup_natmap_pop.
Qed.
Lemma natmap_pop_push {A} o (m : natmap A) : natmap_pop (natmap_push o m) = m.
Proof. apply natmap_eq. by destruct o, m as [[|??]]. Qed.