Skip to content
Snippets Groups Projects
Commit a6d17331 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Add an implementation of maps over nat.

parent c490d858
No related branches found
No related tags found
No related merge requests found
......@@ -102,6 +102,17 @@ Fixpoint replicate {A} (n : nat) (x : A) : list A :=
(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
Fixpoint last' {A} (x : A) (l : list A) : A :=
match l with
| [] => x
| x :: l => last' x l
end.
Definition last {A} (l : list A) : option A :=
match l with
| [] => None
| x :: l => Some (last' x l)
end.
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
......
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This files implements finite maps whose keys range over Coq's data type of
unary natural numbers [nat]. *)
Require Import fin_maps.
Notation natmap_raw A := (list (option A)).
Definition natmap_wf {A} (l : natmap_raw A) :=
match last l with
| None => True
| Some x => is_Some x
end.
Instance natmap_wf_pi {A} (l : natmap_raw A) : ProofIrrel (natmap_wf l).
Proof. unfold natmap_wf. case_match; apply _. Qed.
Lemma natmap_wf_inv {A} (o : option A) (l : natmap_raw A) :
natmap_wf (o :: l) natmap_wf l.
Proof. by destruct l. Qed.
Lemma natmap_wf_lookup {A} (l : natmap_raw A) :
natmap_wf l l [] i x, mjoin (l !! i) = Some x.
Proof.
intros Hwf Hl. induction l as [|[x|] l IH]; simpl.
* done.
* exists 0. simpl. eauto.
* destruct IH as (i&x&?); eauto using natmap_wf_inv.
{ intro. subst. inversion Hwf. }
by exists (S i) x.
Qed.
Definition natmap (A : Type) : Type := sig (@natmap_wf A).
Instance natmap_empty {A} : Empty (natmap A) := [] I.
Instance natmap_lookup {A} : Lookup nat A (natmap A) :=
λ i m, mjoin (`m !! i).
Fixpoint natmap_singleton_raw {A} (i : nat) (x : A) : natmap_raw A :=
match i with
| 0 => [Some x]
| S i => None :: natmap_singleton_raw i x
end.
Lemma natmap_singleton_wf {A} (i : nat) (x : A) :
natmap_wf (natmap_singleton_raw i x).
Proof.
unfold natmap_wf, last.
induction i as [|i]; simpl; repeat case_match; simplify_equality; eauto.
by destruct i.
Qed.
Lemma natmap_lookup_singleton_raw {A} (i : nat) (x : A) :
mjoin (natmap_singleton_raw i x !! i) = Some x.
Proof. induction i; simpl; auto. Qed.
Lemma natmap_lookup_singleton_raw_ne {A} (i j : nat) (x : A) :
i j mjoin (natmap_singleton_raw i x !! j) = None.
Proof. revert j; induction i; intros [|?]; simpl; auto with congruence. Qed.
Hint Rewrite @natmap_lookup_singleton_raw : natmap.
Definition natmap_cons_canon {A} (o : option A) (l : natmap_raw A) :=
match o, l with
| None, [] => []
| _, _ => o :: l
end.
Lemma natmap_cons_canon_wf {A} (o : option A) (l : natmap_raw A) :
natmap_wf l natmap_wf (natmap_cons_canon o l).
Proof. unfold natmap_wf, last. destruct o, l; simpl; eauto. Qed.
Lemma natmap_cons_canon_O {A} (o : option A) (l : natmap_raw A) :
mjoin (natmap_cons_canon o l !! 0) = o.
Proof. by destruct o, l. Qed.
Lemma natmap_cons_canon_S {A} (o : option A) (l : natmap_raw A) i :
natmap_cons_canon o l !! S i = l !! i.
Proof. by destruct o, l. Qed.
Hint Rewrite @natmap_cons_canon_O @natmap_cons_canon_S : natmap.
Definition natmap_alter_raw {A} (f : option A option A) :
nat natmap_raw A natmap_raw A :=
fix go i l {struct l} :=
match l with
| [] =>
match f None with
| Some x => natmap_singleton_raw i x
| None => []
end
| o :: l =>
match i with
| 0 => natmap_cons_canon (f o) l
| S i => natmap_cons_canon o (go i l)
end
end.
Lemma natmap_alter_wf {A} (f : option A option A) i l :
natmap_wf l natmap_wf (natmap_alter_raw f i l).
Proof.
revert i. induction l; [intro | intros [|?]]; simpl; repeat case_match;
eauto using natmap_singleton_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Instance natmap_alter {A} : PartialAlter nat A (natmap A) := λ f i m,
natmap_alter_raw f i (`m)natmap_alter_wf _ _ _ (proj2_sig m).
Lemma natmap_lookup_alter_raw {A} (f : option A option A) i l :
mjoin (natmap_alter_raw f i l !! i) = f (mjoin (l !! i)).
Proof.
revert i. induction l; intros [|?]; simpl; repeat case_match; simpl;
autorewrite with natmap; auto.
Qed.
Lemma natmap_lookup_alter_raw_ne {A} (f : option A option A) i j l :
i j mjoin (natmap_alter_raw f i l !! j) = mjoin (l !! j).
Proof.
revert i j. induction l; intros [|?] [|?] ?; simpl;
repeat case_match; simpl; autorewrite with natmap; auto with congruence.
rewrite natmap_lookup_singleton_raw_ne; congruence.
Qed.
Definition natmap_merge_aux {A B} (f : option A option B) :
natmap_raw A natmap_raw B :=
fix go l :=
match l with
| [] => []
| o :: l => natmap_cons_canon (f o) (go l)
end.
Lemma natmap_merge_aux_wf {A B} (f : option A option B) l :
natmap_wf l natmap_wf (natmap_merge_aux f l).
Proof. induction l; simpl; eauto using natmap_cons_canon_wf, natmap_wf_inv. Qed.
Lemma natmap_lookup_merge_aux {A B} (f : option A option B) l i :
f None = None
mjoin (natmap_merge_aux f l !! i) = f (mjoin (l !! i)).
Proof.
revert i. induction l; intros [|?]; simpl; autorewrite with natmap; auto.
Qed.
Hint Rewrite @natmap_lookup_merge_aux : natmap.
Definition natmap_merge_raw {A B C} (f : option A option B option C) :
natmap_raw A natmap_raw B natmap_raw C :=
fix go l1 l2 :=
match l1, l2 with
| [], l2 => natmap_merge_aux (f None) l2
| l1, [] => natmap_merge_aux (flip f None) l1
| o1 :: l1, o2 :: l2 => natmap_cons_canon (f o1 o2) (go l1 l2)
end.
Lemma natmap_merge_wf {A B C} (f : option A option B option C) l1 l2 :
natmap_wf l1 natmap_wf l2 natmap_wf (natmap_merge_raw f l1 l2).
Proof.
revert l2. induction l1; intros [|??]; simpl;
eauto using natmap_merge_aux_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Lemma natmap_lookup_merge_raw {A B C} (f : option A option B option C) l1 l2 i :
f None None = None
mjoin (natmap_merge_raw f l1 l2 !! i) = f (mjoin (l1 !! i)) (mjoin (l2 !! i)).
Proof.
intros. revert i l2. induction l1; intros [|?] [|??]; simpl;
autorewrite with natmap; auto.
Qed.
Instance natmap_merge: Merge natmap := λ A B C f m1 m2,
natmap_merge_raw f _ _ natmap_merge_wf _ _ _ (proj2_sig m1) (proj2_sig m2).
Fixpoint natmap_to_list_raw {A} (i : nat) (l : natmap_raw A) : list (nat * A) :=
match l with
| [] => []
| None :: l => natmap_to_list_raw (S i) l
| Some x :: l => (i,x) :: natmap_to_list_raw (S i) l
end.
Lemma natmap_elem_of_to_list_raw_aux {A} j (l : natmap_raw A) i x :
(i,x) natmap_to_list_raw j l i', i = i' + j mjoin (l !! i') = Some x.
Proof.
split.
* revert j. induction l as [|[y|] l IH]; intros j; simpl.
+ by rewrite elem_of_nil.
+ rewrite elem_of_cons. intros [?|?]; simplify_equality.
- by exists 0.
- destruct (IH (S j)) as (i'&?&?); auto.
exists (S i'); simpl; auto with lia.
+ intros. destruct (IH (S j)) as (i'&?&?); auto.
exists (S i'); simpl; auto with lia.
* intros (i'&?&Hi'). subst. revert i' j Hi'.
induction l as [|[y|] l IH]; intros i j ?; simpl.
+ done.
+ destruct i as [|i]; simplify_equality; [left|].
right. rewrite NPeano.Nat.add_succ_comm. by apply (IH i (S j)).
+ destruct i as [|i]; simplify_equality.
rewrite NPeano.Nat.add_succ_comm. by apply (IH i (S j)).
Qed.
Lemma natmap_elem_of_to_list_raw {A} (l : natmap_raw A) i x :
(i,x) natmap_to_list_raw 0 l mjoin (l !! i) = Some x.
Proof.
rewrite natmap_elem_of_to_list_raw_aux. setoid_rewrite plus_0_r. naive_solver.
Qed.
Lemma natmap_to_list_raw_nodup {A} i (l : natmap_raw A) :
NoDup (natmap_to_list_raw i l).
Proof.
revert i. induction l as [|[?|] ? IH]; simpl; try constructor; auto.
rewrite natmap_elem_of_to_list_raw_aux. intros (?&?&?). lia.
Qed.
Instance natmap_to_list {A} : FinMapToList nat A (natmap A) := λ m,
natmap_to_list_raw 0 (`m).
Definition natmap_map_raw {A B} (f : A B) : natmap_raw A natmap_raw B :=
fmap (fmap f).
Lemma natmap_map_wf {A B} (f : A B) l :
natmap_wf l natmap_wf (natmap_map_raw f l).
Proof.
unfold natmap_wf, last.
induction l; simpl; repeat case_match; simplify_equality; eauto.
simpl. by rewrite fmap_is_Some.
Qed.
Lemma natmap_lookup_map_raw {A B} (f : A B) i l :
mjoin (natmap_map_raw f l !! i) = f <$> mjoin (l !! i).
Proof. unfold natmap_map_raw. rewrite list_lookup_fmap. by destruct (l !! i). Qed.
Instance natmap_map: FMap natmap := λ A B f m,
natmap_map_raw f _ natmap_map_wf _ _ (proj2_sig m).
Instance: FinMap nat natmap.
Proof.
split.
* unfold lookup, natmap_lookup. intros A [l1 Hl1] [l2 Hl2] E.
apply (sig_eq_pi _). revert l2 Hl1 Hl2 E. simpl.
induction l1 as [|[x|] l1 IH]; intros [|[y|] l2] Hl1 Hl2 E; simpl in *.
+ done.
+ by specialize (E 0).
+ destruct (natmap_wf_lookup (None :: l2)) as [i [??]]; auto with congruence.
+ by specialize (E 0).
+ f_equal. apply (E 0). apply IH; eauto using natmap_wf_inv.
intros i. apply (E (S i)).
+ by specialize (E 0).
+ destruct (natmap_wf_lookup (None :: l1)) as [i [??]]; auto with congruence.
+ by specialize (E 0).
+ f_equal. apply IH; eauto using natmap_wf_inv.
intros i. apply (E (S i)).
* done.
* intros ?? [??] ?. apply natmap_lookup_alter_raw.
* intros ?? [??] ??. apply natmap_lookup_alter_raw_ne.
* intros ??? [??] ?. apply natmap_lookup_map_raw.
* intros ? [??]. by apply natmap_to_list_raw_nodup.
* intros ? [??] ??. by apply natmap_elem_of_to_list_raw.
* intros ????? [??] [??] ?. by apply natmap_lookup_merge_raw.
Qed.
......@@ -47,6 +47,19 @@ Qed.
Inductive is_Some {A} : option A Prop :=
make_is_Some x : is_Some (Some x).
Instance is_Some_pi {A} (x : option A) : ProofIrrel (is_Some x).
Proof.
intros [?] p2. by refine
match p2 in is_Some o return
match o with
| Some y => (make_is_Some y =)
| _ => λ _, False
end p2
with
| make_is_Some y => _
end.
Qed.
Lemma make_is_Some_alt `(x : option A) a : x = Some a is_Some x.
Proof. intros. by subst. Qed.
Hint Resolve make_is_Some_alt.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment