Skip to content
Snippets Groups Projects
Commit e767481f authored by Ralf Jung's avatar Ralf Jung
Browse files

sts: for disjointness, it is enough to demand being a subset of the empty set

parent 0b7821f1
No related branches found
No related tags found
No related merge requests found
......@@ -18,9 +18,9 @@ Instance set_difference {A} : Difference (set A) := λ X1 X2,
Instance set_collection : Collection A (set A).
Proof. by split; [split | |]; repeat intro. Qed.
Lemma mkSet_elem_of {A} (f : A Prop) x : f x x mkSet f.
Lemma mkSet_elem_of {A} (f : A Prop) x : (x mkSet f) = f x.
Proof. done. Qed.
Lemma mkSet_not_elem_of {A} (f : A Prop) x : ~f x x mkSet f.
Lemma mkSet_not_elem_of {A} (f : A Prop) x : (x mkSet f) = (~f x).
Proof. done. Qed.
Instance set_ret : MRet set := λ A (x : A), {[ x ]}.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment