Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lambda-rust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simon Spies
lambda-rust
Commits
3f715e03
Commit
3f715e03
authored
8 years ago
by
Jacques-Henri Jourdan
Browse files
Options
Downloads
Patches
Plain Diff
Borrowing judgement.
parent
497199d6
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
perm_incl.v
+94
-1
94 additions, 1 deletion
perm_incl.v
with
94 additions
and
1 deletion
perm_incl.v
+
94
−
1
View file @
3f715e03
...
...
@@ -16,6 +16,9 @@ Section defs.
Global
Instance
perm_equiv
:
Equiv
perm
:=
λ
ρ1
ρ2
,
perm_incl
ρ1
ρ2
∧
perm_incl
ρ2
ρ1
.
Definition
borrowing
κ
(
ρ
ρ1
ρ2
:
perm
)
:=
∀
tid
,
lft
κ
⊢
ρ
tid
-★
ρ1
tid
=
{
⊤
}
=★
ρ2
tid
★
κ
∋
ρ1
tid
.
End
defs
.
Infix
"⇒"
:=
perm_incl
(
at
level
95
,
no
associativity
)
:
C_scope
.
...
...
@@ -153,7 +156,7 @@ Section props.
{
destruct
ql
as
[|
q0
ql
];
last
done
.
destruct
q
.
simpl
in
*.
by
subst
.
}
destruct
v
as
[[[|
l
|]|]|];
try
by
(
destruct
tyl
as
[|
ty0
tyl
],
ql
as
[|
q0
ql
];
try
done
;
by
split
;
iIntros
(
tid
)
"H"
;
by
split
;
iIntros
(
tid
)
"H"
;
try
done
;
[
iDestruct
"H"
as
(
l
)
"[% _]"
||
iDestruct
"H"
as
"[]"
|
iDestruct
"H"
as
"[[]_]"
])
.
destruct
(
@
exists_last
_
ql
)
as
(
ql'
&
q0
&
->
)
.
done
.
...
...
@@ -176,4 +179,94 @@ Section props.
by
iSplit
;
iIntros
"[$[$[$[$$]]]]"
.
Qed
.
Lemma
perm_split_uniq_borrow_prod
tyl
κ
v
:
v
◁
&
uniq
{
κ
}
(
product
tyl
)
⇒
foldr
(
λ
tyoffs
acc
,
proj_valuable
(
Z
.
of_nat
(
tyoffs
.
2
))
v
◁
&
uniq
{
κ
}
(
tyoffs
.
1
)
★
acc
)
%
P
⊤
(
combine_offs
tyl
0
)
.
Proof
.
intros
tid
.
destruct
v
as
[[[|
l
|]|]|];
iIntros
"H"
;
try
iDestruct
"H"
as
"[]"
;
iDestruct
"H"
as
(
l0
)
"[EQ H]"
;
iDestruct
"EQ"
as
%
[
=
]
.
subst
l0
.
rewrite
split_prod_mt
.
iRevert
"H"
.
induction
(
combine_offs
tyl
0
)
as
[|[
ty
offs
]
ll
IH
]
.
by
auto
.
iIntros
"H"
.
rewrite
big_sepL_cons
/=.
iVs
(
lft_borrow_split
with
"H"
)
as
"[H0 H]"
.
set_solver
.
iVs
(
IH
with
"[] H"
)
as
"$"
.
done
.
iVsIntro
.
iExists
_
.
eauto
.
Qed
.
Lemma
perm_split_shr_borrow_prod
tyl
κ
v
:
v
◁
&
shr
{
κ
}
(
product
tyl
)
⇒
foldr
(
λ
tyoffs
acc
,
proj_valuable
(
Z
.
of_nat
(
tyoffs
.
2
))
v
◁
&
shr
{
κ
}
(
tyoffs
.
1
)
★
acc
)
%
P
⊤
(
combine_offs
tyl
0
)
.
Proof
.
intros
tid
.
destruct
v
as
[[[|
l
|]|]|];
iIntros
"H"
;
try
iDestruct
"H"
as
"[]"
;
iDestruct
"H"
as
(
l0
)
"[EQ H]"
;
iDestruct
"EQ"
as
%
[
=
]
.
subst
l0
.
simpl
.
iVsIntro
.
iRevert
"H"
.
change
(
ndot
(
A
:=
nat
))
with
(
λ
N
i
,
N
.
@
(
0
+
i
)
%
nat
)
.
generalize
O
at
2
.
induction
(
combine_offs
tyl
0
)
as
[|[
ty
offs
]
ll
IH
]
.
by
auto
.
iIntros
(
i
)
"H"
.
rewrite
big_sepL_cons
/=.
iDestruct
"H"
as
"[H0 H]"
.
setoid_rewrite
<-
Nat
.
add_succ_comm
.
iDestruct
(
IH
with
"[] H"
)
as
"$"
.
done
.
iExists
_
.
iSplit
.
done
.
admit
.
(* FIXME : namespaces problem. *)
Admitted
.
Lemma
borrowing_perm_incl
κ
ρ
ρ1
ρ2
θ
:
borrowing
κ
ρ
ρ1
ρ2
→
ρ
★
κ
∋
θ
★
ρ1
⇒
ρ2
★
κ
∋
(
θ
★
ρ1
)
.
Proof
.
iIntros
(
Hbor
tid
)
"(Hρ&Hθ&Hρ1)"
.
iVs
(
Hbor
with
"[#] Hρ Hρ1"
)
as
"[$ ?]"
.
by
iApply
lft_extract_lft
.
iApply
lft_extract_combine
.
set_solver
.
by
iFrame
.
Qed
.
Lemma
own_uniq_borrowing
v
q
ty
κ
:
borrowing
κ
⊤
(
v
◁
own
q
ty
)
(
v
◁
&
uniq
{
κ
}
ty
)
.
Proof
.
iIntros
(
tid
)
"#Hκ _ Hown"
.
destruct
v
as
[[[|
l
|]|]|];
try
by
(
iDestruct
"Hown"
as
"[]"
||
iDestruct
"Hown"
as
(
l
)
"[% _]"
)
.
iDestruct
"Hown"
as
(
l'
)
"[EQ [Hf Hown]]"
.
iDestruct
"EQ"
as
%
[
=
]
.
subst
l'
.
iVs
(
lft_borrow_create
with
"Hκ Hown"
)
as
"[Hbor Hextract]"
.
done
.
iSplitL
"Hbor"
.
by
simpl
;
eauto
.
assert
((
Some
#
l
◁
own
q
ty
)
%
P
tid
⊣⊢
▷
†
{
q
}
l
…
ty_size
ty
★
▷
l
↦★:
ty_own
ty
tid
)
as
->
.
{
iSplit
;
iIntros
"H/="
.
-
iDestruct
"H"
as
(
l'
)
"[EQ [Hf Hown]]"
.
iDestruct
"EQ"
as
%
[
=
]
.
subst
l'
.
by
iFrame
.
-
iExists
_
.
eauto
.
}
iVs
(
lft_borrow_create
with
"Hκ Hf"
)
as
"[_ Hf]"
.
done
.
iVs
(
lft_extract_combine
with
"[-]"
)
.
done
.
by
iFrame
.
(* FIXME : extraction needs to be monotone in some sense to
remove the later. *)
admit
.
Admitted
.
Lemma
reborrow_uniq_borrowing
κ
κ'
v
ty
:
borrowing
κ
(
κ
⊑
κ'
)
(
v
◁
&
uniq
{
κ'
}
ty
)
(
v
◁
&
uniq
{
κ
}
ty
)
.
Proof
.
iIntros
(
tid
)
"_ #Hord H"
.
destruct
v
as
[[[|
l
|]|]|];
try
by
(
iDestruct
"H"
as
"[]"
||
iDestruct
"H"
as
(
l
)
"[% _]"
)
.
iDestruct
"H"
as
(
l'
)
"[EQ H]"
.
iDestruct
"EQ"
as
%
[
=
]
.
subst
l'
.
iVs
(
lft_reborrow
with
"Hord H"
)
as
"[H Hextr]"
.
done
.
iVsIntro
.
iSplitL
"H"
.
iExists
_
.
by
eauto
.
iApply
(
lft_extract_proper
with
"Hextr"
)
.
iSplit
;
iIntros
"H/="
.
-
iDestruct
"H"
as
(
l'
)
"[EQ H]"
.
iDestruct
"EQ"
as
%
[
=
]
.
by
subst
l'
.
-
iExists
_
.
eauto
.
Qed
.
Lemma
lftincl_borrowing
κ
κ'
q
:
borrowing
κ
⊤
[
κ'
]{
q
}
(
κ
⊑
κ'
)
.
Proof
.
iIntros
(
tid
)
"#Hκ #Hord [Htok #Hκ']"
.
iVs
(
lft_mkincl'
with
"[#] Htok"
)
as
"[$ H]"
.
done
.
by
iFrame
"#"
.
iVs
(
lft_borrow_create
with
"Hκ []"
)
as
"[_ H']"
.
done
.
by
iNext
;
iApply
"Hκ'"
.
iApply
lft_extract_combine
.
done
.
by
iFrame
.
Qed
.
End
props
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment