Forked from
Iris / Iris
5862 commits behind the upstream repository.
-
Robbert Krebbers authored
There are now two proof mode tactics for dealing with modalities: - `iModIntro` : introduction of a modality - `iMod pm_trm as (x1 ... xn) "ipat"` : eliminate a modality The behavior of these tactics can be controlled by instances of the `IntroModal` and `ElimModal` type class. We have declared instances for later, except 0, basic updates and fancy updates. The tactic `iMod` is flexible enough that it can also eliminate an updates around a weakest pre, and so forth. The corresponding introduction patterns of these tactics are `!>` and `>`. These tactics replace the tactics `iUpdIntro`, `iUpd` and `iTimeless`. Source of backwards incompatability: the introduction pattern `!>` is used for introduction of arbitrary modalities. It used to introduce laters by stripping of a later of each hypotheses.
Robbert Krebbers authoredThere are now two proof mode tactics for dealing with modalities: - `iModIntro` : introduction of a modality - `iMod pm_trm as (x1 ... xn) "ipat"` : eliminate a modality The behavior of these tactics can be controlled by instances of the `IntroModal` and `ElimModal` type class. We have declared instances for later, except 0, basic updates and fancy updates. The tactic `iMod` is flexible enough that it can also eliminate an updates around a weakest pre, and so forth. The corresponding introduction patterns of these tactics are `!>` and `>`. These tactics replace the tactics `iUpdIntro`, `iUpd` and `iTimeless`. Source of backwards incompatability: the introduction pattern `!>` is used for introduction of arbitrary modalities. It used to introduce laters by stripping of a later of each hypotheses.
lifting.v 3.64 KiB
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import wsat.
From iris.base_logic Require Export big_op.
From iris.proofmode Require Import tactics.
Section lifting.
Context `{irisG Λ Σ}.
Implicit Types v : val Λ.
Implicit Types e : expr Λ.
Implicit Types σ : state Λ.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val Λ → iProp Σ.
Lemma wp_lift_step E Φ e1 :
(|={E,∅}=> ∃ σ1, ■ reducible e1 σ1 ★ ▷ ownP σ1 ★
▷ ∀ e2 σ2 efs, ■ prim_step e1 σ1 e2 σ2 efs ★ ownP σ2
={∅,E}=★ WP e2 @ E {{ Φ }} ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
⊢ WP e1 @ E {{ Φ }}.
Proof.
iIntros "H". rewrite wp_unfold /wp_pre.
destruct (to_val e1) as [v|] eqn:EQe1.
- iLeft. iExists v. iSplit. done. iMod "H" as (σ1) "[% _]".
by erewrite reducible_not_val in EQe1.
- iRight; iSplit; eauto.
iIntros (σ1) "Hσ". iMod "H" as (σ1') "(% & >Hσf & H)".
iDestruct (ownP_agree σ1 σ1' with "[-]") as %<-; first by iFrame.
iModIntro; iSplit; [done|]; iNext; iIntros (e2 σ2 efs Hstep).
iMod (ownP_update σ1 σ2 with "[-H]") as "[$ ?]"; first by iFrame.
iApply "H"; eauto.
Qed.
Lemma wp_lift_pure_step `{Inhabited (state Λ)} E Φ e1 :
(∀ σ1, reducible e1 σ1) →
(∀ σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs → σ1 = σ2) →
(▷ ∀ e2 efs σ, ■ prim_step e1 σ e2 σ efs →
WP e2 @ E {{ Φ }} ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
⊢ WP e1 @ E {{ Φ }}.
Proof.
iIntros (Hsafe Hstep) "H". rewrite wp_unfold /wp_pre; iRight; iSplit; auto.
{ iPureIntro. eapply reducible_not_val, (Hsafe inhabitant). }
iIntros (σ1) "Hσ". iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver.
iModIntro. iSplit; [done|]; iNext; iIntros (e2 σ2 efs ?).
destruct (Hstep σ1 e2 σ2 efs); auto; subst.
iMod "Hclose"; iModIntro. iFrame "Hσ". iApply "H"; auto.
Qed.
(** Derived lifting lemmas. *)
Lemma wp_lift_atomic_step {E Φ} e1 σ1 :
atomic e1 →
reducible e1 σ1 →
(▷ ownP σ1 ★ ▷ ∀ v2 σ2 efs, ■ prim_step e1 σ1 (of_val v2) σ2 efs ★ ownP σ2 -★
(|={E}=> Φ v2) ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
⊢ WP e1 @ E {{ Φ }}.
Proof.
iIntros (Hatomic ?) "[Hσ H]". iApply (wp_lift_step E _ e1).
iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. iModIntro.
iExists σ1. iFrame "Hσ"; iSplit; eauto.
iNext; iIntros (e2 σ2 efs) "[% Hσ]".
edestruct (Hatomic σ1 e2 σ2 efs) as [v2 <-%of_to_val]; eauto.
iDestruct ("H" $! v2 σ2 efs with "[Hσ]") as "[HΦ $]"; first by eauto.
iMod "Hclose". iMod "HΦ". iApply wp_value; auto using to_of_val.
Qed.
Lemma wp_lift_atomic_det_step {E Φ e1} σ1 v2 σ2 efs :
atomic e1 →
reducible e1 σ1 →
(∀ e2' σ2' efs', prim_step e1 σ1 e2' σ2' efs' →
σ2 = σ2' ∧ to_val e2' = Some v2 ∧ efs = efs') →
▷ ownP σ1 ★ ▷ (ownP σ2 -★
(|={E}=> Φ v2) ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
⊢ WP e1 @ E {{ Φ }}.
Proof.
iIntros (?? Hdet) "[Hσ1 Hσ2]". iApply (wp_lift_atomic_step _ σ1); try done.
iFrame. iNext. iIntros (v2' σ2' efs') "[% Hσ2']".
edestruct Hdet as (->&->%of_to_val%(inj of_val)&->). done. by iApply "Hσ2".
Qed.
Lemma wp_lift_pure_det_step `{Inhabited (state Λ)} {E Φ} e1 e2 efs :
(∀ σ1, reducible e1 σ1) →
(∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→
▷ (WP e2 @ E {{ Φ }} ★ [★ list] ef ∈ efs, WP ef {{ _, True }})
⊢ WP e1 @ E {{ Φ }}.
Proof.
iIntros (? Hpuredet) "?". iApply (wp_lift_pure_step E); try done.
by intros; eapply Hpuredet. iNext. by iIntros (e' efs' σ (_&->&->)%Hpuredet).
Qed.
End lifting.