Forked from
Iris / Iris
5936 commits behind the upstream repository.
atomic.v 4.70 KiB
From iris.program_logic Require Export hoare weakestpre pviewshifts.
From iris.algebra Require Import upred_big_op.
From iris.prelude Require Export coPset.
From iris.proofmode Require Import tactics.
Import uPred.
Section atomic.
Context `{irisG Λ Σ} {A: Type}.
(* logically atomic triple: <x, α> e @ E_i, E_o <v, β x v> *)
Definition atomic_triple
(α: A → iProp Σ)
(β: A → val _ → iProp Σ)
(Ei Eo: coPset)
(e: expr _) : iProp Σ :=
(∀ P Q, (P ={Eo, Ei}=> ∃ x:A,
α x ★
((α x ={Ei, Eo}=★ P) ∧
(∀ v, β x v ={Ei, Eo}=★ Q x v))
) -★ {{ P }} e @ ⊤ {{ v, (∃ x: A, Q x v) }})%I.
(* Weakest-pre version of the above one. Also weaker in some sense *)
Definition atomic_triple_wp
(α: A → iProp Σ)
(β: A → val _ → iProp Σ)
(Ei Eo: coPset)
(e: expr _) : iProp Σ :=
(∀ P Q, (P ={Eo, Ei}=> ∃ x,
α x ★
((α x ={Ei, Eo}=★ P) ∧
(∀ v, β x v ={Ei, Eo}=★ Q x v))
) -★ P -★ WP e @ ⊤ {{ v, (∃ x, Q x v) }})%I.
Lemma atomic_triple_weaken α β Ei Eo e:
atomic_triple α β Ei Eo e ⊢ atomic_triple_wp α β Ei Eo e.
Proof.
iIntros "H". iIntros (P Q) "Hvs Hp".
by iApply ("H" $! P Q with "Hvs").
Qed.
Arguments atomic_triple {_} _ _ _ _.
End atomic.
(* TODO: Importing in the middle of the file is bad practice. *)
From iris.heap_lang Require Export lang proofmode notation.
From iris.heap_lang.lib Require Import par.
Section incr.
Context `{!heapG Σ} (N : namespace).
Definition incr: val :=
rec: "incr" "l" :=
let: "oldv" := !"l" in
if: CAS "l" "oldv" ("oldv" + #1)
then "oldv" (* return old value if success *)
else "incr" "l".
Global Opaque incr.
(* TODO: Can we have a more WP-style definition and avoid the equality? *)
Definition incr_triple (l: loc) :=
atomic_triple (fun (v: Z) => l ↦ #v)%I
(fun v ret => ret = #v ★ l ↦ #(v + 1))%I
(nclose heapN)
⊤
(incr #l).
Lemma incr_atomic_spec: ∀ (l: loc), heapN ⊥ N → heap_ctx ⊢ incr_triple l.
Proof.
iIntros (l HN) "#?".
rewrite /incr_triple.
rewrite /atomic_triple.
iIntros (P Q) "#Hvs".
iLöb as "IH".
iIntros "!# HP".
wp_rec.
wp_bind (! _)%E.
iVs ("Hvs" with "HP") as (x) "[Hl [Hvs' _]]".
wp_load.
iVs ("Hvs'" with "Hl") as "HP".
iVsIntro. wp_let. wp_bind (CAS _ _ _). wp_op.
iVs ("Hvs" with "HP") as (x') "[Hl Hvs']".
destruct (decide (x = x')).
- subst.
iDestruct "Hvs'" as "[_ Hvs']".
iSpecialize ("Hvs'" $! #x').
wp_cas_suc.
iVs ("Hvs'" with "[Hl]") as "HQ"; first by iFrame.
iVsIntro. wp_if. iVsIntro. by iExists x'.
- iDestruct "Hvs'" as "[Hvs' _]".
wp_cas_fail.
iVs ("Hvs'" with "[Hl]") as "HP"; first by iFrame.
iVsIntro. wp_if. by iApply "IH".
Qed.
End incr.
Section user.
Context `{!heapG Σ, !spawnG Σ} (N : namespace).
Definition incr_2 : val :=
λ: "x",
let: "l" := ref "x" in
incr "l" || incr "l";;
!"l".
(* prove that incr is safe w.r.t. data race. TODO: prove a stronger post-condition *)
Lemma incr_2_safe:
∀ (x: Z), heapN ⊥ N -> heap_ctx ⊢ WP incr_2 #x {{ _, True }}.
Proof.
iIntros (x HN) "#Hh".
rewrite /incr_2.
wp_let.
wp_alloc l as "Hl".
iVs (inv_alloc N _ (∃x':Z, l ↦ #x')%I with "[Hl]") as "#?"; first eauto.
wp_let.
wp_bind (_ || _)%E.
iApply (wp_par (λ _, True%I) (λ _, True%I)).
iFrame "Hh".
(* prove worker triple *)
iDestruct (incr_atomic_spec N l with "Hh") as "Hincr"=>//.
rewrite /incr_triple /atomic_triple.
iSpecialize ("Hincr" $! True%I (fun _ _ => True%I) with "[]").
- iIntros "!# _".
(* open the invariant *)
iInv N as (x') ">Hl'" "Hclose".
(* mask magic *)
iApply pvs_intro'.
{ apply ndisj_subseteq_difference; auto. }
iIntros "Hvs".
iExists x'.
iFrame "Hl'".
iSplit.
+ (* provide a way to rollback *)
iIntros "Hl'".
iVs "Hvs". iVs ("Hclose" with "[Hl']"); eauto.
+ (* provide a way to commit *)
iIntros (v) "[Heq Hl']".
iVs "Hvs". iVs ("Hclose" with "[Hl']"); eauto.
- iDestruct "Hincr" as "#HIncr".
iSplitL; [|iSplitL]; try (iApply wp_wand_r;iSplitL; [by iApply "HIncr"|auto]).
iIntros (v1 v2) "_ !>".
wp_seq.
iInv N as (x') ">Hl" "Hclose".
wp_load.
iApply "Hclose". eauto.
Qed.
End user.