Forked from
Iris / Iris
6427 commits behind the upstream repository.
-
Robbert Krebbers authoredRobbert Krebbers authored
lock.v 3.17 KiB
From iris.program_logic Require Export global_functor.
From iris.proofmode Require Import invariants ghost_ownership.
From iris.heap_lang Require Import proofmode notation.
Import uPred.
Definition newlock : val := λ: <>, ref #false.
Definition acquire : val :=
rec: "acquire" "l" :=
if: CAS "l" #false #true then #() else "acquire" "l".
Definition release : val := λ: "l", "l" <- #false.
Global Opaque newlock acquire release.
(** The CMRA we need. *)
(* Not bundling heapG, as it may be shared with other users. *)
Class lockG Σ := LockG { lock_tokG :> inG heap_lang Σ (exclR unitC) }.
Definition lockGF : gFunctorList := [GFunctor (constRF (exclR unitC))].
Instance inGF_lockG `{H : inGFs heap_lang Σ lockGF} : lockG Σ.
Proof. destruct H. split. apply: inGF_inG. Qed.
Section proof.
Context {Σ : gFunctors} `{!heapG Σ, !lockG Σ}.
Context (heapN : namespace).
Local Notation iProp := (iPropG heap_lang Σ).
Definition lock_inv (γ : gname) (l : loc) (R : iProp) : iProp :=
(∃ b : bool, l ↦ #b ★ if b then True else own γ (Excl ()) ★ R)%I.
Definition is_lock (l : loc) (R : iProp) : iProp :=
(∃ N γ, heapN ⊥ N ∧ heap_ctx heapN ∧ inv N (lock_inv γ l R))%I.
Definition locked (l : loc) (R : iProp) : iProp :=
(∃ N γ, heapN ⊥ N ∧ heap_ctx heapN ∧
inv N (lock_inv γ l R) ∧ own γ (Excl ()))%I.
Global Instance lock_inv_ne n γ l : Proper (dist n ==> dist n) (lock_inv γ l).
Proof. solve_proper. Qed.
Global Instance is_lock_ne n l : Proper (dist n ==> dist n) (is_lock l).
Proof. solve_proper. Qed.
Global Instance locked_ne n l : Proper (dist n ==> dist n) (locked l).
Proof. solve_proper. Qed.
(** The main proofs. *)
Global Instance is_lock_persistent l R : PersistentP (is_lock l R).
Proof. apply _. Qed.
Lemma locked_is_lock l R : locked l R ⊢ is_lock l R.
Proof. rewrite /is_lock. iDestruct 1 as (N γ) "(?&?&?&_)"; eauto. Qed.
Lemma newlock_spec N (R : iProp) Φ :
heapN ⊥ N →
heap_ctx heapN ★ R ★ (∀ l, is_lock l R -★ Φ #l) ⊢ WP newlock #() {{ Φ }}.
Proof.
iIntros (?) "(#Hh & HR & HΦ)". rewrite /newlock.
wp_seq. wp_alloc l as "Hl".
iPvs (own_alloc (Excl ())) as (γ) "Hγ"; first done.
iPvs (inv_alloc N _ (lock_inv γ l R) with "[-HΦ]") as "#?"; first done.
{ iIntros ">". iExists false. by iFrame. }
iPvsIntro. iApply "HΦ". iExists N, γ; eauto.
Qed.
Lemma acquire_spec l R (Φ : val → iProp) :
is_lock l R ★ (locked l R -★ R -★ Φ #()) ⊢ WP acquire #l {{ Φ }}.
Proof.
iIntros "[Hl HΦ]". iDestruct "Hl" as (N γ) "(%&#?&#?)".
iLöb as "IH". wp_rec. wp_focus (CAS _ _ _)%E.
iInv N as ([]) "[Hl HR]".
- wp_cas_fail. iPvsIntro; iSplitL "Hl".
+ iNext. iExists true; eauto.
+ wp_if. by iApply "IH".
- wp_cas_suc. iPvsIntro. iDestruct "HR" as "[Hγ HR]". iSplitL "Hl".
+ iNext. iExists true; eauto.
+ wp_if. iApply ("HΦ" with "[-HR] HR"). iExists N, γ; eauto.
Qed.
Lemma release_spec R l (Φ : val → iProp) :
locked l R ★ R ★ Φ #() ⊢ WP release #l {{ Φ }}.
Proof.
iIntros "(Hl&HR&HΦ)"; iDestruct "Hl" as (N γ) "(% & #? & #? & Hγ)".
rewrite /release. wp_let. iInv N as (b) "[Hl _]".
wp_store. iPvsIntro. iFrame "HΦ". iNext. iExists false. by iFrame.
Qed.
End proof.