Forked from
Iris / Iris
5872 commits behind the upstream repository.
-
Robbert Krebbers authored
There are now two proof mode tactics for dealing with modalities: - `iModIntro` : introduction of a modality - `iMod pm_trm as (x1 ... xn) "ipat"` : eliminate a modality The behavior of these tactics can be controlled by instances of the `IntroModal` and `ElimModal` type class. We have declared instances for later, except 0, basic updates and fancy updates. The tactic `iMod` is flexible enough that it can also eliminate an updates around a weakest pre, and so forth. The corresponding introduction patterns of these tactics are `!>` and `>`. These tactics replace the tactics `iUpdIntro`, `iUpd` and `iTimeless`. Source of backwards incompatability: the introduction pattern `!>` is used for introduction of arbitrary modalities. It used to introduce laters by stripping of a later of each hypotheses.
Robbert Krebbers authoredThere are now two proof mode tactics for dealing with modalities: - `iModIntro` : introduction of a modality - `iMod pm_trm as (x1 ... xn) "ipat"` : eliminate a modality The behavior of these tactics can be controlled by instances of the `IntroModal` and `ElimModal` type class. We have declared instances for later, except 0, basic updates and fancy updates. The tactic `iMod` is flexible enough that it can also eliminate an updates around a weakest pre, and so forth. The corresponding introduction patterns of these tactics are `!>` and `>`. These tactics replace the tactics `iUpdIntro`, `iUpd` and `iTimeless`. Source of backwards incompatability: the introduction pattern `!>` is used for introduction of arbitrary modalities. It used to introduce laters by stripping of a later of each hypotheses.
counter_examples.v 7.14 KiB
From iris.base_logic Require Import base_logic soundness.
From iris.proofmode Require Import tactics.
(** This proves that we need the ▷ in a "Saved Proposition" construction with
name-dependent allocation. *)
Module savedprop. Section savedprop.
Context (M : ucmraT).
Notation iProp := (uPred M).
Notation "¬ P" := (□ (P → False))%I : uPred_scope.
Implicit Types P : iProp.
(** Saved Propositions and the update modality *)
Context (sprop : Type) (saved : sprop → iProp → iProp).
Hypothesis sprop_persistent : ∀ i P, PersistentP (saved i P).
Hypothesis sprop_alloc_dep :
∀ (P : sprop → iProp), True ==★ (∃ i, saved i (P i)).
Hypothesis sprop_agree : ∀ i P Q, saved i P ∧ saved i Q ⊢ □ (P ↔ Q).
(** A bad recursive reference: "Assertion with name [i] does not hold" *)
Definition A (i : sprop) : iProp := ∃ P, ¬ P ★ saved i P.
Lemma A_alloc : True ==★ ∃ i, saved i (A i).
Proof. by apply sprop_alloc_dep. Qed.
Lemma saved_NA i : saved i (A i) ⊢ ¬ A i.
Proof.
iIntros "#Hs !# #HA". iPoseProof "HA" as "HA'".
iDestruct "HA'" as (P) "[#HNP HsP]". iApply "HNP".
iDestruct (sprop_agree i P (A i) with "[]") as "#[_ HP]".
{ eauto. }
iApply "HP". done.
Qed.
Lemma saved_A i : saved i (A i) ⊢ A i.
Proof.
iIntros "#Hs". iExists (A i). iFrame "#".
by iApply saved_NA.
Qed.
Lemma contradiction : False.
Proof.
apply (@soundness M False 1); simpl.
iIntros "". iMod A_alloc as (i) "#H".
iPoseProof (saved_NA with "H") as "HN".
iModIntro. iNext.
iApply "HN". iApply saved_A. done.
Qed.
End savedprop. End savedprop.
(** This proves that we need the ▷ when opening invariants. *)
(** We fork in [uPred M] for any M, but the proof would work in any BI. *)
Module inv. Section inv.
Context (M : ucmraT).
Notation iProp := (uPred M).
Implicit Types P : iProp.
(** Assumptions *)
(** We have the update modality (two classes: empty/full mask) *)
Inductive mask := M0 | M1.
Context (fupd : mask → iProp → iProp).
Hypothesis fupd_intro : ∀ E P, P ⊢ fupd E P.
Hypothesis fupd_mono : ∀ E P Q, (P ⊢ Q) → fupd E P ⊢ fupd E Q.
Hypothesis fupd_fupd : ∀ E P, fupd E (fupd E P) ⊢ fupd E P.
Hypothesis fupd_frame_l : ∀ E P Q, P ★ fupd E Q ⊢ fupd E (P ★ Q).
Hypothesis fupd_mask_mono : ∀ P, fupd M0 P ⊢ fupd M1 P.
(** We have invariants *)
Context (name : Type) (inv : name → iProp → iProp).
Hypothesis inv_persistent : ∀ i P, PersistentP (inv i P).
Hypothesis inv_alloc : ∀ P, P ⊢ fupd M1 (∃ i, inv i P).
Hypothesis inv_open :
∀ i P Q R, (P ★ Q ⊢ fupd M0 (P ★ R)) → (inv i P ★ Q ⊢ fupd M1 R).
(* We have tokens for a little "two-state STS": [start] -> [finish].
state. [start] also asserts the exact state; it is only ever owned by the
invariant. [finished] is duplicable. *)
(* Posssible implementations of these axioms:
* Using the STS monoid of a two-state STS, where [start] is the
authoritative saying the state is exactly [start], and [finish]
is the "we are at least in state [finish]" typically owned by threads.
* Ex () +_⊥ ()
*)
Context (gname : Type).
Context (start finished : gname → iProp).
Hypothesis sts_alloc : True ⊢ fupd M0 (∃ γ, start γ).
Hypotheses start_finish : ∀ γ, start γ ⊢ fupd M0 (finished γ).
Hypothesis finished_not_start : ∀ γ, start γ ★ finished γ ⊢ False.
Hypothesis finished_dup : ∀ γ, finished γ ⊢ finished γ ★ finished γ.
(** We assume that we cannot update to false. *)
Hypothesis consistency : ¬ (True ⊢ fupd M1 False).
(** Some general lemmas and proof mode compatibility. *)
Lemma inv_open' i P R : inv i P ★ (P -★ fupd M0 (P ★ fupd M1 R)) ⊢ fupd M1 R.
Proof.
iIntros "(#HiP & HP)". iApply fupd_fupd. iApply inv_open; last first.
{ iSplit; first done. iExact "HP". }
iIntros "(HP & HPw)". by iApply "HPw".
Qed.
Instance fupd_mono' E : Proper ((⊢) ==> (⊢)) (fupd E).
Proof. intros P Q ?. by apply fupd_mono. Qed.
Instance fupd_proper E : Proper ((⊣⊢) ==> (⊣⊢)) (fupd E).
Proof.
intros P Q; rewrite !uPred.equiv_spec=> -[??]; split; by apply fupd_mono.
Qed.
Lemma fupd_frame_r E P Q : (fupd E P ★ Q) ⊢ fupd E (P ★ Q).
Proof. by rewrite comm fupd_frame_l comm. Qed.
Global Instance elim_fupd_fupd E P Q : ElimModal (fupd E P) P (fupd E Q) (fupd E Q).
Proof. by rewrite /ElimModal fupd_frame_r uPred.wand_elim_r fupd_fupd. Qed.
Global Instance elim_fupd0_fupd1 P Q : ElimModal (fupd M0 P) P (fupd M1 Q) (fupd M1 Q).
Proof.
by rewrite /ElimModal fupd_frame_r uPred.wand_elim_r fupd_mask_mono fupd_fupd.
Qed.
Global Instance exists_split_fupd0 {A} E P (Φ : A → iProp) :
FromExist P Φ → FromExist (fupd E P) (λ a, fupd E (Φ a)).
Proof.
rewrite /FromExist=>HP. apply uPred.exist_elim=> a.
apply fupd_mono. by rewrite -HP -(uPred.exist_intro a).
Qed.
(** Now to the actual counterexample. We start with a weird form of saved propositions. *)
Definition saved (γ : gname) (P : iProp) : iProp :=
∃ i, inv i (start γ ∨ (finished γ ★ □ P)).
Global Instance saved_persistent γ P : PersistentP (saved γ P) := _.
Lemma saved_alloc (P : gname → iProp) : True ⊢ fupd M1 (∃ γ, saved γ (P γ)).
Proof.
iIntros "". iMod (sts_alloc) as (γ) "Hs".
iMod (inv_alloc (start γ ∨ (finished γ ★ □ (P γ))) with "[Hs]") as (i) "#Hi".
{ auto. }
iApply fupd_intro. by iExists γ, i.
Qed.
Lemma saved_cast γ P Q : saved γ P ★ saved γ Q ★ □ P ⊢ fupd M1 (□ Q).
Proof.
iIntros "(#HsP & #HsQ & #HP)". iDestruct "HsP" as (i) "HiP".
iApply (inv_open' i). iSplit; first done.
iIntros "HaP". iAssert (fupd M0 (finished γ)) with "[HaP]" as "> Hf".
{ iDestruct "HaP" as "[Hs | [Hf _]]".
- by iApply start_finish.
- by iApply fupd_intro. }
iDestruct (finished_dup with "Hf") as "[Hf Hf']".
iApply fupd_intro. iSplitL "Hf'"; first by eauto.
(* Step 2: Open the Q-invariant. *)
iClear (i) "HiP ". iDestruct "HsQ" as (i) "HiQ".
iApply (inv_open' i). iSplit; first done.
iIntros "[HaQ | [_ #HQ]]".
{ iExFalso. iApply finished_not_start. by iFrame. }
iApply fupd_intro. iSplitL "Hf".
{ iRight. by iFrame. }
by iApply fupd_intro.
Qed.
(** And now we tie a bad knot. *)
Notation "¬ P" := (□ (P -★ fupd M1 False))%I : uPred_scope.
Definition A i : iProp := ∃ P, ¬P ★ saved i P.
Global Instance A_persistent i : PersistentP (A i) := _.
Lemma A_alloc : True ⊢ fupd M1 (∃ i, saved i (A i)).
Proof. by apply saved_alloc. Qed.
Lemma saved_NA i : saved i (A i) ⊢ ¬A i.
Proof.
iIntros "#Hi !# #HA". iPoseProof "HA" as "HA'".
iDestruct "HA'" as (P) "#[HNP Hi']".
iMod (saved_cast i (A i) P with "[]") as "HP".
{ eauto. }
by iApply "HNP".
Qed.
Lemma saved_A i : saved i (A i) ⊢ A i.
Proof.
iIntros "#Hi". iExists (A i). iFrame "#".
by iApply saved_NA.
Qed.
Lemma contradiction : False.
Proof.
apply consistency. iIntros "".
iMod A_alloc as (i) "#H".
iPoseProof (saved_NA with "H") as "HN".
iApply "HN". iApply saved_A. done.
Qed.
End inv. End inv.