Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ike Mulder
Iris
Commits
1476960a
Commit
1476960a
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
complete recv_split!
This is still a rather horrible proof, though. More work to be done.
parent
fa2b3d9d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
barrier/barrier.v
+93
-12
93 additions, 12 deletions
barrier/barrier.v
with
93 additions
and
12 deletions
barrier/barrier.v
+
93
−
12
View file @
1476960a
...
...
@@ -155,7 +155,7 @@ Section proof.
rewrite
-
(
exist_intro
(
<
[
i1
:=
R1
]
>
(
<
[
i2
:=
R2
]
>
Ψ
)))
.
rewrite
[(
Π
★
{
set
_}
(
λ
_,
saved_prop_own
_
_))
%
I
](
big_sepS_delete
_
I
i
)
//.
rewrite
!
assoc
[(_
★
(_
-★
_))
%
I
]
comm
!
assoc
[(_
★
▷
_)
%
I
]
comm
.
rewrite
!
assoc
[(_
★
saved_prop_own
i
_)
%
I
]
comm
!
assoc
[(_
★
saved_prop_own
i
_)
%
I
]
comm
-!
assoc
.
rewrite
!
assoc
[(_
★
_
i
_)
%
I
]
comm
!
assoc
[(_
★
_
i
_)
%
I
]
comm
-!
assoc
.
rewrite
3
!
assoc
.
apply
sep_mono
.
-
rewrite
saved_prop_agree
.
u_strip_later
.
apply
wand_intro_l
.
rewrite
[(_
★
(_
-★
Π
★
{
set
_}
_))
%
I
]
comm
!
assoc
wand_elim_r
.
...
...
@@ -183,7 +183,29 @@ Section proof.
rewrite
fn_lookup_insert_ne
;
last
naive_solver
.
rewrite
fn_lookup_insert_ne
;
last
naive_solver
.
done
.
Qed
.
Qed
.
Lemma
ress_split
i
i1
i2
Q
R1
R2
I
:
i
∈
I
→
i1
∉
I
→
i2
∉
I
→
i1
≠
i2
→
(
saved_prop_own
i2
R2
★
saved_prop_own
i1
R1
★
saved_prop_own
i
Q
★
(
Q
-★
R1
★
R2
)
★
ress
I
)
⊑
ress
({[
i1
]}
∪
({[
i2
]}
∪
(
I
∖
{[
i
]})))
.
Proof
.
intros
.
rewrite
/
ress
.
rewrite
[(
Π
★
{
set
_}
_)
%
I
](
big_sepS_delete
_
I
i
)
//
!
assoc
!
sep_exist_l
!
sep_exist_r
.
apply
exist_elim
=>
R
.
rewrite
big_sepS_insert
;
last
set_solver
.
rewrite
big_sepS_insert
;
last
set_solver
.
rewrite
-
(
exist_intro
R1
)
-
(
exist_intro
R2
)
[(_
i2
_
★
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
.
apply
sep_mono_l
.
rewrite
[(
▷
_
★
_
i2
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
_
i
R
)
%
I
]
comm
!
assoc
saved_prop_agree
.
rewrite
[(
▷
_
★
_)
%
I
]
comm
-!
assoc
.
eapply
wand_apply_l
.
{
rewrite
<-
later_wand
,
<-
later_intro
.
done
.
}
{
by
rewrite
later_sep
.
}
u_strip_later
.
apply
:
(
eq_rewrite
R
Q
(
λ
x
,
x
)
%
I
);
eauto
with
I
.
Qed
.
Lemma
newchan_spec
(
P
:
iProp
)
(
Φ
:
val
→
iProp
)
:
(
heap_ctx
heapN
★
∀
l
,
recv
l
P
★
send
l
P
-★
Φ
(
LocV
l
))
...
...
@@ -378,17 +400,17 @@ Section proof.
match
goal
with
|
|
-
_
⊑
?G
=>
rewrite
[
G
]
lock
end
.
rewrite
{
1
}[
saved_prop_own
i1
_]
always_sep_dup
.
rewrite
{
1
}[
saved_prop_own
i2
_]
always_sep_dup
.
rewrite
!
assoc
[(_
★
saved_prop_own
i1
_)
%
I
]
comm
.
rewrite
!
assoc
[(_
★
saved_prop_own
i
_)
%
I
]
comm
.
rewrite
!
assoc
[(_
★
_
i1
_)
%
I
]
comm
.
rewrite
!
assoc
[(_
★
_
i
_)
%
I
]
comm
.
rewrite
!
assoc
[(_
★
(
l
↦
_))
%
I
]
comm
.
rewrite
!
assoc
[(_
★
(
waiting
_
_))
%
I
]
comm
.
rewrite
!
assoc
[(_
★
(
Q
-★
_))
%
I
]
comm
-!
assoc
5
!
assoc
.
unlock
.
apply
sep_mono
.
+
(* This should really all be handled automatically. *)
rewrite
!
assoc
[(_
★
(
l
↦
_))
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
saved_prop_own
i2
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
saved_prop_own
i1
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
saved_prop_own
i
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
_
i2
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
_
i1
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
_
i
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
done
.
+
apply
wand_intro_l
.
rewrite
!
assoc
.
eapply
pvs_wand_r
.
rewrite
/
recv
.
rewrite
-
(
exist_intro
γ
)
-
(
exist_intro
P
)
-
(
exist_intro
R1
)
-
(
exist_intro
i1
)
.
...
...
@@ -410,9 +432,67 @@ Section proof.
{
rewrite
-
later_intro
.
apply
wand_intro_l
.
by
rewrite
right_id
.
}
apply
sep_intro_True_r
;
first
done
.
{
rewrite
-
later_intro
.
apply
wand_intro_l
.
by
rewrite
right_id
.
}
(* Case II: High state *)
-
Abort
.
(* Case II: High state. TODO: Lots of this script is just copy-n-paste of the previous one.
Some of that ist because stuff should be more trivial than it is (like sts_ownS_op
having a too strong precondition, see the TODO over there); some of that
is because the goals a fairly simioar in structure, and the proof scripts
are mostlx concerned with manually managaing the structure (assoc, comm, dup) of
the context. *)
-
rewrite
-
(
exist_intro
(
State
High
({[
i1
]}
∪
({[
i2
]}
∪
(
I
∖
{[
i
]})))))
.
rewrite
-
(
exist_intro
({[
Change
i1
]}
∪
{[
Change
i2
]}))
.
rewrite
const_equiv
;
last
first
.
(* This is exactly the same proof as above. Really, this should all be automated to be simple...
but if we can't get that, at least factor it out as a lemma? *)
{
apply
rtc_once
.
constructor
;
first
constructor
;
rewrite
/=
/
tok
/=
;
first
set_solver
.
(* This gets annoying... and I think I can see a pattern with all these proofs. Automatable? *)
-
apply
elem_of_equiv
=>
t
.
destruct
t
;
last
set_solver
.
rewrite
!
mkSet_elem_of
/
change_tokens
/=.
rewrite
!
elem_of_union
!
elem_of_difference
!
elem_of_singleton
.
naive_solver
.
-
apply
elem_of_equiv
=>
t
.
destruct
t
as
[
j
|];
last
set_solver
.
rewrite
!
mkSet_elem_of
/
change_tokens
/=.
rewrite
!
elem_of_union
!
elem_of_difference
!
elem_of_singleton
.
destruct
(
decide
(
i1
=
j
));
first
naive_solver
.
destruct
(
decide
(
i2
=
j
));
first
naive_solver
.
destruct
(
decide
(
i
=
j
));
naive_solver
.
}
rewrite
left_id
-
later_intro
{
1
3
}
/
barrier_inv
.
rewrite
-
(
ress_split
_
_
_
Q
R1
R2
);
[|
done
..]
.
match
goal
with
|
|
-
_
⊑
?G
=>
rewrite
[
G
]
lock
end
.
rewrite
{
1
}[
saved_prop_own
i1
_]
always_sep_dup
.
rewrite
{
1
}[
saved_prop_own
i2
_]
always_sep_dup
.
rewrite
!
assoc
[(_
★
_
i1
_)
%
I
]
comm
.
rewrite
!
assoc
[(_
★
_
i
_)
%
I
]
comm
.
rewrite
!
assoc
[(_
★
(
l
↦
_))
%
I
]
comm
.
rewrite
!
assoc
[(_
★
(
ress
_))
%
I
]
comm
.
rewrite
!
assoc
[(_
★
(
Q
-★
_))
%
I
]
comm
-!
assoc
5
!
assoc
.
unlock
.
apply
sep_mono
.
+
(* This should really all be handled automatically. *)
rewrite
!
assoc
[(_
★
(
l
↦
_))
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
_
i2
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
_
i1
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
[(_
★
_
i
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
done
.
+
apply
wand_intro_l
.
rewrite
!
assoc
.
eapply
pvs_wand_r
.
rewrite
/
recv
.
rewrite
-
(
exist_intro
γ
)
-
(
exist_intro
P
)
-
(
exist_intro
R1
)
-
(
exist_intro
i1
)
.
rewrite
-
(
exist_intro
γ
)
-
(
exist_intro
P
)
-
(
exist_intro
R2
)
-
(
exist_intro
i2
)
.
do
2
rewrite
!
(
assoc
(
★
)
%
I
)
[(_
★
sts_ownS
_
_
_)
%
I
]
comm
.
rewrite
-!
assoc
.
rewrite
[(
sts_ownS
_
_
_
★
_
★
_)
%
I
]
assoc
-
pvs_frame_r
.
apply
sep_mono
.
*
rewrite
-
sts_ownS_op
;
[|
set_solver
|
by
eauto
..]
.
apply
sts_own_weaken
;
first
done
.
{
rewrite
!
mkSet_elem_of
/=.
set_solver
+.
}
apply
sts
.
closed_op
;
[
by
eauto
..|
set_solver
|]
.
apply
(
non_empty_inhabited
(
State
High
({[
i1
]}
∪
({[
i2
]}
∪
(
I
∖
{[
i
]})))))
.
rewrite
!
mkSet_elem_of
/=.
set_solver
+.
*
rewrite
{
1
}[
heap_ctx
_]
always_sep_dup
!
assoc
[(_
★
heap_ctx
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
!
[(_
★
heap_ctx
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
{
1
}[
sts_ctx
_
_
_]
always_sep_dup
!
assoc
[(_
★
sts_ctx
_
_
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
!
assoc
!
[(_
★
sts_ctx
_
_
_)
%
I
]
comm
-!
assoc
.
apply
sep_mono_r
.
rewrite
comm
.
apply
sep_mono_r
.
apply
sep_intro_True_l
.
{
rewrite
-
later_intro
.
apply
wand_intro_l
.
by
rewrite
right_id
.
}
apply
sep_intro_True_r
;
first
done
.
{
rewrite
-
later_intro
.
apply
wand_intro_l
.
by
rewrite
right_id
.
}
Qed
.
Lemma
recv_strengthen
l
P1
P2
:
(
P1
-★
P2
)
⊑
(
recv
l
P1
-★
recv
l
P2
)
.
...
...
@@ -455,8 +535,9 @@ Section spec.
by
rewrite
right_id
.
-
intros
.
apply
ht_alt
.
rewrite
-
wait_spec
;
last
done
.
apply
sep_intro_True_r
;
first
done
.
apply
wand_intro_l
.
eauto
with
I
.
-
admit
.
-
intros
.
apply
ht_alt
.
rewrite
-
recv_split
.
apply
sep_intro_True_r
;
first
done
.
apply
wand_intro_l
.
eauto
with
I
.
-
intros
.
apply
recv_strengthen
.
Abort
.
Qed
.
End
spec
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment