Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ike Mulder
Iris
Commits
3f92ae1b
Commit
3f92ae1b
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
prove some things about invariants
parent
fcf38b87
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
program_logic/namespace.v
+62
-2
62 additions, 2 deletions
program_logic/namespace.v
program_logic/pviewshifts.v
+9
-0
9 additions, 0 deletions
program_logic/pviewshifts.v
with
71 additions
and
2 deletions
program_logic/namespace.v
+
62
−
2
View file @
3f92ae1b
Require
Export
algebra
.
base
prelude
.
countable
prelude
.
co_pset
.
Require
Import
program_logic
.
ownership
.
Require
Export
program_logic
.
pviewshifts
.
Import
uPred
.
Local
Hint
Extern
100
(
@
eq
coPset
_
_)
=>
solve_elem_of
.
Local
Hint
Extern
100
(
@
subseteq
coPset
_
_)
=>
solve_elem_of
.
Local
Hint
Extern
100
(_
∉
_)
=>
solve_elem_of
.
Local
Hint
Extern
99
({[
_
]}
⊆
_)
=>
apply
elem_of_subseteq_singleton
.
Definition
namespace
:=
list
positive
.
Definition
nnil
:
namespace
:=
nil
.
...
...
@@ -34,7 +40,61 @@ Proof.
induction
(
encode_nat
(
encode
x
));
intros
[|?]
?;
f_equal'
;
naive_solver
.
Qed
.
Local
Hint
Resolve
nclose_subseteq
ndot_nclose
.
(** Derived forms and lemmas about them. *)
Definition
inv
{
Λ
Σ
}
(
N
:
namespace
)
(
P
:
iProp
Λ
Σ
)
:
iProp
Λ
Σ
:=
ownI
(
encode
N
)
P
.
(* TODO: Add lemmas about inv here. *)
(
∃
i
:
positive
,
ownI
(
encode
$
ndot
N
i
)
P
)
%
I
.
Section
inv
.
Context
{
Λ
:
language
}
{
Σ
:
iFunctor
}
.
Implicit
Types
i
:
positive
.
Implicit
Types
N
:
namespace
.
Implicit
Types
P
Q
R
:
iProp
Λ
Σ
.
Global
Instance
inv_contractive
N
:
Contractive
(
@
inv
Λ
Σ
N
)
.
Proof
.
intros
n
?
?
EQ
.
apply
exists_ne
=>
i
.
by
apply
ownI_contractive
.
Qed
.
Global
Instance
inv_always_stable
N
P
:
AlwaysStable
(
inv
N
P
)
:=
_
.
Lemma
always_inv
N
P
:
(
□
inv
N
P
)
%
I
≡
inv
N
P
.
Proof
.
by
rewrite
always_always
.
Qed
.
(* We actually pretty much lose the abolity to deal with mask-changing view
shifts when using `inv`. This is because we cannot exactly name the invariants
any more. But that's okay; all this means is that sugar like the atomic
triples will have to prove its own version of the open_close rule
by unfolding `inv`. *)
Lemma
pvs_open_close
E
N
P
Q
R
:
nclose
N
⊆
E
→
P
⊑
(
inv
N
R
∧
(
▷
R
-★
pvs
(
E
∖
nclose
N
)
(
E
∖
nclose
N
)
(
▷
R
★
Q
)))
%
I
→
P
⊑
pvs
E
E
Q
.
Proof
.
move
=>
HN
->
{
P
}
.
rewrite
/
inv
and_exist_r
.
apply
exist_elim
=>
i
.
(* Add this to the local context, so that solve_elem_of finds it. *)
assert
({[
encode
(
ndot
N
i
)]}
⊆
nclose
N
)
by
eauto
.
rewrite
always_and_sep_l'
(
always_sep_dup'
(
ownI
_
_))
.
rewrite
{
1
}
pvs_openI
!
pvs_frame_r
.
(* TODO is there a common pattern here in the way we combine pvs_trans
and pvs_mask_frame_mono? *)
rewrite
-
(
pvs_trans
E
(
E
∖
{[
(
encode
(
ndot
N
i
))
]}));
last
by
solve_elem_of
.
(* FIXME: Shouldn't eauto work, since I added a Hint Extern? *)
apply
pvs_mask_frame_mono
;
[
solve_elem_of
..|]
.
rewrite
(
commutative
_
(
▷
R
)
%
I
)
-
associative
wand_elim_r
pvs_frame_l
.
rewrite
-
(
pvs_trans
_
(
E
∖
{[
(
encode
(
ndot
N
i
))
]})
E
);
last
by
solve_elem_of
.
apply
pvs_mask_frame_mono
;
[
solve_elem_of
..|]
.
rewrite
associative
-
always_and_sep_l'
pvs_closeI
pvs_frame_r
left_id
.
apply
pvs_mask_frame'
;
solve_elem_of
.
Qed
.
Lemma
pvs_alloc
N
P
:
▷
P
⊑
pvs
N
N
(
inv
N
P
)
.
Proof
.
(* FIXME: Can we have the E that contains exactly all (encode $ ndot N i) for all i?
If not, then we have to change the def. of inv. *)
Abort
.
End
inv
.
This diff is collapsed.
Click to expand it.
program_logic/pviewshifts.v
+
9
−
0
View file @
3f92ae1b
...
...
@@ -144,6 +144,7 @@ Lemma pvs_impl_l E1 E2 P Q : (□ (P → Q) ∧ pvs E1 E2 P) ⊑ pvs E1 E2 Q.
Proof
.
by
rewrite
pvs_always_l
always_elim
impl_elim_l
.
Qed
.
Lemma
pvs_impl_r
E1
E2
P
Q
:
(
pvs
E1
E2
P
∧
□
(
P
→
Q
))
⊑
pvs
E1
E2
Q
.
Proof
.
by
rewrite
(
commutative
_)
pvs_impl_l
.
Qed
.
Lemma
pvs_mask_frame'
E1
E1'
E2
E2'
P
:
E1'
⊆
E1
→
E2'
⊆
E2
→
E1
∖
E1'
=
E2
∖
E2'
→
pvs
E1'
E2'
P
⊑
pvs
E1
E2
P
.
Proof
.
...
...
@@ -151,13 +152,21 @@ Proof.
-
rewrite
{
2
}
HEE
=>{
HEE
}
.
by
rewrite
-!
union_difference_L
.
-
solve_elem_of
.
Qed
.
Lemma
pvs_mask_frame_mono
E1
E1'
E2
E2'
P
Q
:
E1'
⊆
E1
→
E2'
⊆
E2
→
E1
∖
E1'
=
E2
∖
E2'
→
P
⊑
Q
→
pvs
E1'
E2'
P
⊑
pvs
E1
E2
Q
.
Proof
.
intros
HE1
HE2
HEE
->
.
by
apply
pvs_mask_frame'
.
Qed
.
Lemma
pvs_mask_weaken
E1
E2
P
:
E1
⊆
E2
→
pvs
E1
E1
P
⊑
pvs
E2
E2
P
.
Proof
.
intros
.
apply
pvs_mask_frame'
;
solve_elem_of
.
Qed
.
Lemma
pvs_ownG_update
E
m
m'
:
m
~~>
m'
→
ownG
m
⊑
pvs
E
E
(
ownG
m'
)
.
Proof
.
intros
;
rewrite
(
pvs_ownG_updateP
E
_
(
m'
=
));
last
by
apply
cmra_update_updateP
.
by
apply
pvs_mono
,
uPred
.
exist_elim
=>
m''
;
apply
uPred
.
const_elim_l
=>
->
.
Qed
.
End
pvs
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment