Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ike Mulder
Iris
Commits
683b7066
Commit
683b7066
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
rename thread-local invariants -> non-atomic invariants
parent
124a7d8d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
_CoqProject
+1
-1
1 addition, 1 deletion
_CoqProject
base_logic/lib/na_invariants.v
+32
-30
32 additions, 30 deletions
base_logic/lib/na_invariants.v
with
33 additions
and
31 deletions
_CoqProject
+
1
−
1
View file @
683b7066
...
...
@@ -80,7 +80,7 @@ base_logic/lib/viewshifts.v
base_logic/lib/auth.v
base_logic/lib/sts.v
base_logic/lib/boxes.v
base_logic/lib/
thread_local
.v
base_logic/lib/
na_invariants
.v
base_logic/lib/cancelable_invariants.v
base_logic/lib/counter_examples.v
base_logic/lib/fractional.v
...
...
This diff is collapsed.
Click to expand it.
base_logic/lib/
thread_local
.v
→
base_logic/lib/
na_invariants
.v
+
32
−
30
View file @
683b7066
...
...
@@ -3,55 +3,57 @@ From iris.algebra Require Export gmap gset coPset.
From
iris
.
proofmode
Require
Import
tactics
.
Import
uPred
.
(* Non-atomic ("thread-local") invariants. *)
Definition
thread_id
:=
gname
.
Class
thread_local
G
Σ
:=
Class
na_inv
G
Σ
:=
tl_inG
:>
inG
Σ
(
prodR
coPset_disjR
(
gset_disjR
positive
))
.
Section
defs
.
Context
`{
invG
Σ
,
thread_local
G
Σ
}
.
Context
`{
invG
Σ
,
na_inv
G
Σ
}
.
Definition
tl
_own
(
tid
:
thread_id
)
(
E
:
coPset
)
:
iProp
Σ
:=
Definition
na
_own
(
tid
:
thread_id
)
(
E
:
coPset
)
:
iProp
Σ
:=
own
tid
(
CoPset
E
,
∅
)
.
Definition
tl
_inv
(
tid
:
thread_id
)
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
Definition
na
_inv
(
tid
:
thread_id
)
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
i
,
⌜
i
∈
↑
N
⌝
∧
inv
N
(
P
∗
own
tid
(
∅
,
GSet
{[
i
]})
∨
tl
_own
tid
{[
i
]}))
%
I
.
inv
N
(
P
∗
own
tid
(
∅
,
GSet
{[
i
]})
∨
na
_own
tid
{[
i
]}))
%
I
.
End
defs
.
Instance
:
Params
(
@
tl
_inv
)
3
.
Typeclasses
Opaque
tl
_own
tl
_inv
.
Instance
:
Params
(
@
na
_inv
)
3
.
Typeclasses
Opaque
na
_own
na
_inv
.
Section
proofs
.
Context
`{
invG
Σ
,
thread_local
G
Σ
}
.
Context
`{
invG
Σ
,
na_inv
G
Σ
}
.
Global
Instance
tl
_own_timeless
tid
E
:
TimelessP
(
tl
_own
tid
E
)
.
Proof
.
rewrite
/
tl
_own
;
apply
_
.
Qed
.
Global
Instance
na
_own_timeless
tid
E
:
TimelessP
(
na
_own
tid
E
)
.
Proof
.
rewrite
/
na
_own
;
apply
_
.
Qed
.
Global
Instance
tl
_inv_ne
tid
N
n
:
Proper
(
dist
n
==>
dist
n
)
(
tl
_inv
tid
N
)
.
Proof
.
rewrite
/
tl
_inv
.
solve_proper
.
Qed
.
Global
Instance
tl
_inv_proper
tid
N
:
Proper
((
≡
)
==>
(
≡
))
(
tl
_inv
tid
N
)
.
Global
Instance
na
_inv_ne
tid
N
n
:
Proper
(
dist
n
==>
dist
n
)
(
na
_inv
tid
N
)
.
Proof
.
rewrite
/
na
_inv
.
solve_proper
.
Qed
.
Global
Instance
na
_inv_proper
tid
N
:
Proper
((
≡
)
==>
(
≡
))
(
na
_inv
tid
N
)
.
Proof
.
apply
(
ne_proper
_)
.
Qed
.
Global
Instance
tl
_inv_persistent
tid
N
P
:
PersistentP
(
tl
_inv
tid
N
P
)
.
Proof
.
rewrite
/
tl
_inv
;
apply
_
.
Qed
.
Global
Instance
na
_inv_persistent
tid
N
P
:
PersistentP
(
na
_inv
tid
N
P
)
.
Proof
.
rewrite
/
na
_inv
;
apply
_
.
Qed
.
Lemma
tl
_alloc
:
(|
==>
∃
tid
,
tl
_own
tid
⊤
)
%
I
.
Lemma
na
_alloc
:
(|
==>
∃
tid
,
na
_own
tid
⊤
)
%
I
.
Proof
.
by
apply
own_alloc
.
Qed
.
Lemma
tl
_own_disjoint
tid
E1
E2
:
tl
_own
tid
E1
-∗
tl
_own
tid
E2
-∗
⌜
E1
⊥
E2
⌝.
Lemma
na
_own_disjoint
tid
E1
E2
:
na
_own
tid
E1
-∗
na
_own
tid
E2
-∗
⌜
E1
⊥
E2
⌝.
Proof
.
apply
wand_intro_r
.
rewrite
/
tl
_own
-
own_op
own_valid
-
coPset_disj_valid_op
.
by
iIntros
([?
_])
.
rewrite
/
na
_own
-
own_op
own_valid
-
coPset_disj_valid_op
.
by
iIntros
([?
_])
.
Qed
.
Lemma
tl
_own_union
tid
E1
E2
:
E1
⊥
E2
→
tl
_own
tid
(
E1
∪
E2
)
⊣⊢
tl
_own
tid
E1
∗
tl
_own
tid
E2
.
Lemma
na
_own_union
tid
E1
E2
:
E1
⊥
E2
→
na
_own
tid
(
E1
∪
E2
)
⊣⊢
na
_own
tid
E1
∗
na
_own
tid
E2
.
Proof
.
intros
?
.
by
rewrite
/
tl
_own
-
own_op
pair_op
left_id
coPset_disj_union
.
intros
?
.
by
rewrite
/
na
_own
-
own_op
pair_op
left_id
coPset_disj_union
.
Qed
.
Lemma
tl
_inv_alloc
tid
E
N
P
:
▷
P
=
{
E
}
=∗
tl
_inv
tid
N
P
.
Lemma
na
_inv_alloc
tid
E
N
P
:
▷
P
=
{
E
}
=∗
na
_inv
tid
N
P
.
Proof
.
iIntros
"HP"
.
iMod
(
own_empty
(
prodUR
coPset_disjUR
(
gset_disjUR
positive
))
tid
)
as
"Hempty"
.
...
...
@@ -64,20 +66,20 @@ Section proofs.
eapply
nclose_infinite
,
(
difference_finite_inv
_
_),
Hfin
.
apply
of_gset_finite
.
}
simpl
.
iDestruct
"Hm"
as
%
(
<-
&
i
&
->
&
?)
.
rewrite
/
tl
_inv
.
rewrite
/
na
_inv
.
iMod
(
inv_alloc
N
with
"[-]"
);
last
(
iModIntro
;
iExists
i
;
eauto
)
.
iNext
.
iLeft
.
by
iFrame
.
Qed
.
Lemma
tl
_inv_open
tid
E
N
P
:
Lemma
na
_inv_open
tid
E
N
P
:
↑
N
⊆
E
→
tl
_inv
tid
N
P
-∗
tl
_own
tid
E
=
{
E
}
=∗
▷
P
∗
tl
_own
tid
(
E
∖↑
N
)
∗
(
▷
P
∗
tl
_own
tid
(
E
∖↑
N
)
=
{
E
}
=∗
tl
_own
tid
E
)
.
na
_inv
tid
N
P
-∗
na
_own
tid
E
=
{
E
}
=∗
▷
P
∗
na
_own
tid
(
E
∖↑
N
)
∗
(
▷
P
∗
na
_own
tid
(
E
∖↑
N
)
=
{
E
}
=∗
na
_own
tid
E
)
.
Proof
.
rewrite
/
tl
_inv
.
iIntros
(?)
"#Htlinv Htoks"
.
rewrite
/
na
_inv
.
iIntros
(?)
"#Htlinv Htoks"
.
iDestruct
"Htlinv"
as
(
i
)
"[% Hinv]"
.
rewrite
[
E
as
X
in
tl
_own
tid
X
](
union_difference_L
(
↑
N
)
E
)
//.
rewrite
[
X
in
(
X
∪
_)](
union_difference_L
{[
i
]}
(
↑
N
))
?
tl
_own_union
;
[|
set_solver
..]
.
rewrite
[
E
as
X
in
na
_own
tid
X
](
union_difference_L
(
↑
N
)
E
)
//.
rewrite
[
X
in
(
X
∪
_)](
union_difference_L
{[
i
]}
(
↑
N
))
?
na
_own_union
;
[|
set_solver
..]
.
iDestruct
"Htoks"
as
"[[Htoki $] $]"
.
iInv
N
as
"[[$ >Hdis]|>Htoki2]"
"Hclose"
.
-
iMod
(
"Hclose"
with
"[Htoki]"
)
as
"_"
;
first
auto
.
...
...
@@ -86,6 +88,6 @@ Section proofs.
+
iDestruct
(
own_valid_2
with
"Hdis Hdis2"
)
as
%
[_
Hval
%
gset_disj_valid_op
]
.
set_solver
.
+
iFrame
.
iApply
"Hclose"
.
iNext
.
iLeft
.
by
iFrame
.
-
iDestruct
(
tl
_own_disjoint
with
"Htoki Htoki2"
)
as
%
?
.
set_solver
.
-
iDestruct
(
na
_own_disjoint
with
"Htoki Htoki2"
)
as
%
?
.
set_solver
.
Qed
.
End
proofs
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment