@@ -188,87 +188,90 @@ In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $
\subsection{Proof rules}
\label{sec:proof-rules}
The judgment $\vctx\mid\pfctx\proves\prop$ says that with free variables $\vctx$, proposition $\prop$ holds whenever all assumptions $\pfctx$ hold.
We implicitly assume that an arbitrary variable context, $\vctx$, is added to every constituent of the rules.
Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
Axioms $\vctx\mid\prop\provesIff\propB$ indicate that both $\vctx\mid\prop\proves\propB$ and $\vctx\mid\propB\proves\prop$ can be derived.
The judgment $\vctx\mid\prop\proves\propB$ says that with free variables $\vctx$, proposition $\propB$ holds whenever assumption $\prop$ holds.
Most of the rules will entirely omit the variable contexts $\vctx$.
In this case, we assume the same arbitrary context is used for every constituent of the rules.
%Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
Axioms $\vctx\mid\prop\provesIff\propB$ indicate that both $\vctx\mid\prop\proves\propB$ and $\vctx\mid\propB\proves\prop$ are proof rules of the logic.
\judgment{\vctx\mid\pfctx\proves\prop}
\judgment{\vctx\mid\prop\proves\propB}
\paragraph{Laws of intuitionistic higher-order logic with equality.}
@@ -279,6 +279,7 @@ Whenever needed (in particular, for masks at view shifts and Hoare triples), we
We use the notation $\namesp.\iname$ for the namespace $[\iname]\dplus\namesp$.
We define the inclusion relation on namespaces as $\namesp_1\sqsubseteq\namesp_2\Lra\Exists\namesp_3. \namesp_2=\namesp_3\dplus\namesp_1$, \ie$\namesp_1$ is a suffix of $\namesp_2$.
\ralf{TODO: This inclusion defn is now outdated.}
We have that $\namesp_1\sqsubseteq\namesp_2\Ra\namecl{\namesp_2}\subseteq\namecl{\namesp_1}$.
Similarly, we define $\namesp_1\disj\namesp_2\eqdef\Exists\namesp_1', \namesp_2'. \namesp_1' \sqsubseteq\namesp_1\land\namesp_2' \sqsubseteq\namesp_2\land |\namesp_1'| = |\namesp_2'| \land\namesp_1' \neq\namesp_2'$, \ie there exists a distinguishing suffix.