Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ike Mulder
Iris
Commits
6e9785bf
Commit
6e9785bf
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
we don't need no self-referential invariant allocation
parent
5739b936
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/counter_examples.v
+84
-23
84 additions, 23 deletions
program_logic/counter_examples.v
with
84 additions
and
23 deletions
program_logic/counter_examples.v
+
84
−
23
View file @
6e9785bf
...
...
@@ -86,16 +86,41 @@ Section inv.
(* We have invariants *)
Context
(
name
:
Type
)
(
inv
:
name
→
iProp
→
iProp
)
.
Hypothesis
inv_persistent
:
forall
i
P
,
PersistentP
(
inv
i
P
)
.
Hypothesis
inv_alloc
_dep
:
forall
(
P
:
name
→
iProp
),
(
∀
i
,
P
i
)
⊢
pvs1
(
∃
i
,
inv
i
(
P
i
)
)
.
Hypothesis
inv_alloc
:
forall
(
P
:
iProp
),
P
⊢
pvs1
(
∃
i
,
inv
i
P
)
.
Hypothesis
inv_open
:
forall
i
P
Q
R
,
(
P
★
Q
⊢
pvs0
(
P
★
R
))
→
(
inv
i
P
★
Q
⊢
pvs1
R
)
.
(* We have tokens for a little "two-state STS" *)
Context
(
start
finished
:
iProp
)
.
Hypothesis
start_finish
:
start
⊢
pvs0
finished
.
Hypothesis
finish_no_start
:
finished
★
start
⊢
False
.
Hypothesis
finish_persistent
:
PersistentP
finished
.
(* We have tokens for a little "three-state STS": [fresh] -> [start n] ->
[finish n]. The [auth_*] tokens are in the invariant and assert an exact
state. [fresh] also asserts the exact state; it is owned by threads (i.e.,
there's a token needed to transition to [start].) [started] and [finished]
are *lower bounds*. We don't need "auth_finish" because the state will
never change again, so [finished] is just as good. *)
Context
(
auth_fresh
fresh
:
iProp
)
.
Context
(
auth_start
started
finished
:
name
→
iProp
)
.
Hypothesis
fresh_start
:
forall
n
,
auth_fresh
★
fresh
⊢
pvs0
(
auth_start
n
★
started
n
)
.
Hypotheses
start_finish
:
forall
n
,
auth_start
n
⊢
pvs0
(
finished
n
)
.
Hypothesis
fresh_not_start
:
forall
n
,
auth_start
n
★
fresh
⊢
False
.
Hypothesis
fresh_not_finished
:
forall
n
,
finished
n
★
fresh
⊢
False
.
Hypothesis
started_not_fresh
:
forall
n
,
auth_fresh
★
started
n
⊢
False
.
Hypothesis
finished_not_start
:
forall
n
m
,
auth_start
n
★
finished
m
⊢
False
.
Hypothesis
started_start_agree
:
forall
n
m
,
auth_start
n
★
started
m
⊢
n
=
m
.
Hypothesis
started_finished_agree
:
forall
n
m
,
finished
n
★
started
m
⊢
n
=
m
.
Hypothesis
finished_agree
:
forall
n
m
,
finished
n
★
finished
m
⊢
n
=
m
.
Hypothesis
started_persistent
:
forall
n
,
PersistentP
(
started
n
)
.
Hypothesis
finished_persistent
:
forall
n
,
PersistentP
(
finished
n
)
.
(* We have that we cannot view shift from the initial state to false
(because the initial state is actually achievable). *)
Hypothesis
soundness
:
¬
(
auth_fresh
★
fresh
⊢
pvs1
False
)
.
(** Some general lemmas and proof mode compatibility. *)
Lemma
inv_open'
i
P
R
:
...
...
@@ -156,32 +181,68 @@ Section inv.
rewrite
/
ElimVs
.
rewrite
pvs0_pvs1
.
apply
elim_pvs1_pvs1
.
Qed
.
Global
Instance
exists_split_pvs0
{
A
}
P
(
Φ
:
A
→
iProp
)
:
FromExist
P
Φ
→
FromExist
(
pvs0
P
)
(
λ
a
,
pvs0
(
Φ
a
))
.
Proof
.
rewrite
/
FromExist
=>
HP
.
apply
uPred
.
exist_elim
=>
a
.
apply
pvs0_mono
.
by
rewrite
-
HP
-
(
uPred
.
exist_intro
a
)
.
Qed
.
Global
Instance
exists_split_pvs1
{
A
}
P
(
Φ
:
A
→
iProp
)
:
FromExist
P
Φ
→
FromExist
(
pvs1
P
)
(
λ
a
,
pvs1
(
Φ
a
))
.
Proof
.
rewrite
/
FromExist
=>
HP
.
apply
uPred
.
exist_elim
=>
a
.
apply
pvs1_mono
.
by
rewrite
-
HP
-
(
uPred
.
exist_intro
a
)
.
Qed
.
(** Now to the actual counterexample. *)
Definition
saved
(
i
:
name
)
(
P
:
iProp
)
:
iProp
:=
inv
i
(
start
∨
□
P
★
finished
)
.
∃
F
:
name
→
iProp
,
P
=
F
i
★
started
i
★
inv
i
(
auth_fresh
∨
∃
j
,
auth_start
j
∨
(
finished
j
★
□
F
j
))
.
Lemma
saved_alloc
(
P
:
name
→
iProp
)
:
start
⊢
pvs1
(
∃
i
,
saved
i
(
P
i
))
.
auth_fresh
★
fresh
⊢
pvs1
(
∃
i
,
saved
i
(
P
i
))
.
Proof
.
iIntros
"HS"
.
iApply
inv_alloc_dep
.
iIntros
(?)
.
by
iLeft
.
iIntros
"[Haf Hf]"
.
iVs
(
inv_alloc
(
auth_fresh
∨
∃
j
,
auth_start
j
∨
(
finished
j
★
□
P
j
))
with
"[Haf]"
)
as
(
i
)
"#Hi"
.
{
iLeft
.
done
.
}
iExists
i
.
iApply
inv_open'
.
iSplit
;
first
done
.
iIntros
"[Haf|Has]"
;
last
first
.
{
iExFalso
.
iDestruct
"Has"
as
(
j
)
"[Has | [Haf _]]"
.
-
iApply
fresh_not_start
.
iSplitL
"Has"
;
done
.
-
iApply
fresh_not_finished
.
iSplitL
"Haf"
;
done
.
}
iVs
((
fresh_start
i
)
with
"[Hf Haf]"
)
as
"[Has #Hs]"
;
first
by
iFrame
.
iApply
pvs0_intro
.
iSplitL
.
-
iRight
.
iExists
i
.
iLeft
.
done
.
-
iApply
pvs1_intro
.
iExists
P
.
iSplit
;
first
done
.
by
iFrame
"#"
.
Qed
.
Lemma
saved_
agree
i
P
Q
:
Lemma
saved_
cast
i
P
Q
:
saved
i
P
★
saved
i
Q
★
□
P
⊢
pvs1
(
□
Q
)
.
Proof
.
iIntros
"(#HsP & #HsQ & #HP)"
.
iApply
(
inv_open'
i
)
.
iSplit
;
first
iExact
"HsP"
.
iIntros
"HiP"
.
iAssert
(
pvs0
(
□
P
★
finished
))
with
"[HiP]"
as
"Hf"
.
{
iDestruct
"HiP"
as
"[Hs | [_ Hf]]"
.
-
iApply
pvs0_frame_l
.
iSplit
;
first
done
.
by
iApply
start_finish
.
-
iApply
pvs0_intro
.
iSplit
;
done
.
}
iVs
"Hf"
as
"[_ #Hf]"
.
iApply
pvs0_intro
.
iSplitL
.
{
iRight
.
eauto
.
}
iApply
(
inv_open'
i
)
.
iSplit
;
first
iExact
"HsQ"
.
iIntros
"[Hs | [#HQ _]]"
.
{
iExFalso
.
iApply
finish_no_start
.
eauto
.
}
iIntros
"(#HsP & #HsQ & #HP)"
.
iDestruct
"HsP"
as
(
FP
)
"(% & HsP & HiP)"
.
iApply
(
inv_open'
i
)
.
iSplit
;
first
done
.
iIntros
"[HaP|HaP]"
.
{
iExFalso
.
iApply
started_not_fresh
.
iSplit
;
done
.
}
(* Can I state a view-shift and immediately run it? *)
iAssert
(
pvs0
(
finished
i
))
with
"[HaP]"
as
"Hf"
.
{
iDestruct
"HaP"
as
(
j
)
"[Hs | [Hf _]]"
.
-
iApply
start_finish
.
(* FIXME: iPoseProof as "%" calls the assertion "%" instead of moving to the Coq context. *)
iPoseProof
(
started_start_agree
with
"[#]"
)
as
"H"
;
first
by
iSplit
.
iDestruct
"H"
as
%<-.
done
.
-
iApply
pvs0_intro
.
iPoseProof
(
started_finished_agree
with
"[#]"
)
as
"H"
;
first
by
iSplit
.
iDestruct
"H"
as
%<-.
done
.
}
iVs
"Hf"
as
"#Hf"
.
iApply
pvs0_intro
.
iSplitL
.
{
iRight
.
iExists
i
.
iRight
.
subst
.
eauto
.
}
iDestruct
"HsQ"
as
(
FQ
)
"(% & HsQ & HiQ)"
.
iApply
(
inv_open'
i
)
.
iSplit
;
first
iExact
"HiQ"
.
iIntros
"[HaQ | HaQ]"
.
{
iExFalso
.
iApply
started_not_fresh
.
iSplit
;
done
.
}
iDestruct
"HaQ"
as
(
j
)
"[HaS | #[Hf' HQ]]"
.
{
iExFalso
.
iApply
finished_not_start
.
eauto
.
}
iApply
pvs0_intro
.
iSplitL
.
{
iRight
.
eauto
.
}
iApply
pvs1_intro
.
done
.
{
iRight
.
iExists
j
.
eauto
.
}
iPoseProof
(
finished_agree
with
"[#]"
)
as
"H"
.
{
iFrame
"Hf Hf'"
.
done
.
}
iDestruct
"H"
as
%<-.
iApply
pvs1_intro
.
subst
Q
.
done
.
Qed
.
(*
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment