Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ike Mulder
Iris
Commits
700de5ad
Commit
700de5ad
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Misc clean up.
parent
30f13e2d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
heap_lang/lang.v
+74
-78
74 additions, 78 deletions
heap_lang/lang.v
heap_lang/lib/par.v
+3
-3
3 additions, 3 deletions
heap_lang/lib/par.v
heap_lang/wp_tactics.v
+2
-1
2 additions, 1 deletion
heap_lang/wp_tactics.v
with
79 additions
and
82 deletions
heap_lang/lang.v
+
74
−
78
View file @
700de5ad
...
...
@@ -98,11 +98,7 @@ Fixpoint is_closed (X : list string) (e : expr) : bool :=
is_closed
X
e0
&&
is_closed
X
e1
&&
is_closed
X
e2
end
.
Section
closed
.
Set
Typeclasses
Unique
Instances
.
Class
Closed
(
X
:
list
string
)
(
e
:
expr
)
:=
closed
:
is_closed
X
e
.
End
closed
.
Class
Closed
(
X
:
list
string
)
(
e
:
expr
)
:=
closed
:
is_closed
X
e
.
Instance
closed_proof_irrel
env
e
:
ProofIrrel
(
Closed
env
e
)
.
Proof
.
rewrite
/
Closed
.
apply
_
.
Qed
.
Instance
closed_decision
env
e
:
Decision
(
Closed
env
e
)
.
...
...
@@ -297,26 +293,6 @@ Definition atomic (e: expr) : bool :=
|
_
=>
false
end
.
(** Substitution *)
Lemma
is_closed_weaken
X
Y
e
:
is_closed
X
e
→
X
`
included
`
Y
→
is_closed
Y
e
.
Proof
.
revert
X
Y
;
induction
e
;
naive_solver
(
eauto
;
set_solver
)
.
Qed
.
Instance
of_val_closed
X
v
:
Closed
X
(
of_val
v
)
.
Proof
.
apply
is_closed_weaken
with
[];
last
set_solver
.
induction
v
;
simpl
;
auto
.
Qed
.
Lemma
closed_subst
X
e
x
es
:
Closed
X
e
→
x
∉
X
→
subst
x
es
e
=
e
.
Proof
.
rewrite
/
Closed
.
revert
X
.
induction
e
;
intros
;
simpl
;
try
case_decide
;
f_equal
/=
;
try
naive_solver
.
naive_solver
(
eauto
;
set_solver
)
.
Qed
.
Lemma
closed_nil_subst
e
x
es
:
Closed
[]
e
→
subst
x
es
e
=
e
.
Proof
.
intros
.
apply
closed_subst
with
[];
set_solver
.
Qed
.
(** Basic properties about the language *)
Lemma
to_of_val
v
:
to_val
(
of_val
v
)
=
Some
v
.
Proof
.
...
...
@@ -377,75 +353,95 @@ Lemma alloc_fresh e v σ :
Proof
.
by
intros
;
apply
AllocS
,
(
not_elem_of_dom
(
D
:=
gset
_)),
is_fresh
.
Qed
.
(** Value type class *)
Class
Value
(
e
:
expr
)
(
v
:
val
)
:=
i
s
_value
:
to_val
e
=
Some
v
.
Instance
of_val
_val
ue
v
:
Value
(
of_val
v
)
v
.
Proof
.
by
rewrite
/
Value
to_of_val
.
Qed
.
Instance
rec
_value
f
x
e
`{
!
Closed
(
f
:
b
:
x
:
b
:
[])
e
}
:
Value
(
Rec
f
x
e
)
(
RecV
f
x
e
)
.
Class
Into
Value
(
e
:
expr
)
(
v
:
val
)
:=
i
nto
_value
:
to_val
e
=
Some
v
.
Instance
into_value_of
_val
v
:
Into
Value
(
of_val
v
)
v
.
Proof
.
by
rewrite
/
Into
Value
to_of_val
.
Qed
.
Instance
into
_value
_rec
f
x
e
`{
!
Closed
(
f
:
b
:
x
:
b
:
[])
e
}
:
Into
Value
(
Rec
f
x
e
)
(
RecV
f
x
e
)
.
Proof
.
rewrite
/
Value
/=
;
case_decide
;
last
done
.
rewrite
/
Into
Value
/=
;
case_decide
;
last
done
.
do
2
f_equal
.
by
apply
(
proof_irrel
)
.
Qed
.
Instance
lit
_value
l
:
Value
(
Lit
l
)
(
LitV
l
)
.
Instance
into
_value
_lit
l
:
Into
Value
(
Lit
l
)
(
LitV
l
)
.
Proof
.
done
.
Qed
.
Instance
pair_value
e1
e2
v1
v2
:
Value
e1
v1
→
Value
e2
v2
→
Value
(
Pair
e1
e2
)
(
PairV
v1
v2
)
.
Proof
.
by
rewrite
/
Value
/=
=>
->
/=
->
.
Qed
.
Instance
injl_value
e
v
:
Value
e
v
→
Value
(
InjL
e
)
(
InjLV
v
)
.
Proof
.
by
rewrite
/
Value
/=
=>
->
.
Qed
.
Instance
injr_value
e
v
:
Value
e
v
→
Value
(
InjR
e
)
(
InjRV
v
)
.
Proof
.
by
rewrite
/
Value
/=
=>
->
.
Qed
.
Instance
into_value_pair
e1
e2
v1
v2
:
IntoValue
e1
v1
→
IntoValue
e2
v2
→
IntoValue
(
Pair
e1
e2
)
(
PairV
v1
v2
)
.
Proof
.
by
rewrite
/
IntoValue
/=
=>
->
/=
->
.
Qed
.
Instance
into_value_injl
e
v
:
IntoValue
e
v
→
IntoValue
(
InjL
e
)
(
InjLV
v
)
.
Proof
.
by
rewrite
/
IntoValue
/=
=>
->
.
Qed
.
Instance
into_value_injr
e
v
:
IntoValue
e
v
→
IntoValue
(
InjR
e
)
(
InjRV
v
)
.
Proof
.
by
rewrite
/
IntoValue
/=
=>
->
.
Qed
.
(** Closed expressions *)
Lemma
is_closed_weaken
X
Y
e
:
is_closed
X
e
→
X
`
included
`
Y
→
is_closed
Y
e
.
Proof
.
revert
X
Y
;
induction
e
;
naive_solver
(
eauto
;
set_solver
)
.
Qed
.
Instance
of_val_closed
X
v
:
Closed
X
(
of_val
v
)
.
Proof
.
apply
is_closed_weaken
with
[];
last
set_solver
.
induction
v
;
simpl
;
auto
.
Qed
.
Lemma
closed_subst
X
e
x
es
:
Closed
X
e
→
x
∉
X
→
subst
x
es
e
=
e
.
Proof
.
rewrite
/
Closed
.
revert
X
.
induction
e
=>
X
/=
;
rewrite
?bool_decide_spec
?andb_True
=>
??;
repeat
case_decide
;
simplify_eq
/=
;
f_equal
;
intuition
eauto
with
set_solver
.
Qed
.
Section
closed_
slow
.
Notation
C
:=
Clos
ed
.
Lemma
closed_
nil_subst
e
x
es
:
Closed
[]
e
→
subst
x
es
e
=
e
.
Proof
.
intros
.
apply
closed_subst
with
[];
set_solver
.
Q
ed
.
Global
Instance
closed_of_val
X
v
:
C
X
(
of_val
v
)
.
Proof
.
apply
of_val_closed
.
Qed
.
Lemma
closed_nil_closed
X
e
:
Closed
[]
e
→
Closed
X
e
.
Proof
.
intros
.
by
apply
is_closed_weaken
with
[],
included_nil
.
Qed
.
Hint
Immediate
closed_nil_closed
:
typeclass_instances
.
Lemma
closed_var
X
x
:
bool_decide
(
x
∈
X
)
→
C
X
(
Var
x
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_lit
X
l
:
C
X
(
Lit
l
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_rec
X
f
x
e
:
C
(
f
:
b
:
x
:
b
:
X
)
e
→
C
X
(
Rec
f
x
e
)
.
Instance
closed_of_val
X
v
:
Closed
X
(
of_val
v
)
.
Proof
.
apply
of_val_closed
.
Qed
.
Instance
closed_rec
X
f
x
e
:
Closed
(
f
:
b
:
x
:
b
:
X
)
e
→
Closed
X
(
Rec
f
x
e
)
.
Proof
.
done
.
Qed
.
Lemma
closed_var
X
x
:
bool_decide
(
x
∈
X
)
→
Closed
X
(
Var
x
)
.
Proof
.
done
.
Qed
.
Hint
Extern
1000
(
Closed
_
(
Var
_))
=>
apply
closed_var
;
vm_compute
;
exact
I
:
typeclass_instances
.
Section
closed
.
Context
(
X
:
list
string
)
.
Notation
C
:=
(
Closed
X
)
.
Global
Instance
closed_lit
l
:
C
(
Lit
l
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_unop
X
op
e
:
C
X
e
→
C
X
(
UnOp
op
e
)
.
Global
Instance
closed_unop
op
e
:
C
e
→
C
(
UnOp
op
e
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_fst
X
e
:
C
X
e
→
C
X
(
Fst
e
)
.
Global
Instance
closed_fst
e
:
C
e
→
C
(
Fst
e
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_snd
X
e
:
C
X
e
→
C
X
(
Snd
e
)
.
Global
Instance
closed_snd
e
:
C
e
→
C
(
Snd
e
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_injl
X
e
:
C
X
e
→
C
X
(
InjL
e
)
.
Global
Instance
closed_injl
e
:
C
e
→
C
(
InjL
e
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_injr
X
e
:
C
X
e
→
C
X
(
InjR
e
)
.
Global
Instance
closed_injr
e
:
C
e
→
C
(
InjR
e
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_fork
X
e
:
C
X
e
→
C
X
(
Fork
e
)
.
Global
Instance
closed_fork
e
:
C
e
→
C
(
Fork
e
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_load
X
e
:
C
X
e
→
C
X
(
Load
e
)
.
Global
Instance
closed_load
e
:
C
e
→
C
(
Load
e
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_alloc
X
e
:
C
X
e
→
C
X
(
Alloc
e
)
.
Global
Instance
closed_alloc
e
:
C
e
→
C
(
Alloc
e
)
.
Proof
.
done
.
Qed
.
Global
Instance
closed_app
X
e1
e2
:
C
X
e1
→
C
X
e2
→
C
X
(
App
e1
e2
)
.
Proof
.
intros
.
by
apply
andb_True
.
Qed
.
Global
Instance
closed_binop
X
op
e1
e2
:
C
X
e1
→
C
X
e2
→
C
X
(
BinOp
op
e1
e2
)
.
Proof
.
intros
.
by
apply
andb_True
.
Qed
.
Global
Instance
closed_pair
X
e1
e2
:
C
X
e1
→
C
X
e2
→
C
X
(
Pair
e1
e2
)
.
Proof
.
intros
.
by
apply
andb_True
.
Qed
.
Global
Instance
closed_store
X
e1
e2
:
C
X
e1
→
C
X
e2
→
C
X
(
Store
e1
e2
)
.
Proof
.
intros
.
by
apply
andb_True
.
Qed
.
Global
Instance
closed_if
X
e0
e1
e2
:
C
X
e0
→
C
X
e1
→
C
X
e2
→
C
X
(
If
e0
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
C
/=
!
andb_True
.
Qed
.
Global
Instance
closed_case
X
e0
e1
e2
:
C
X
e0
→
C
X
e1
→
C
X
e2
→
C
X
(
Case
e0
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
C
/=
!
andb_True
.
Qed
.
Global
Instance
closed_cas
X
e0
e1
e2
:
C
X
e0
→
C
X
e1
→
C
X
e2
→
C
X
(
CAS
e0
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
C
/=
!
andb_True
.
Qed
.
End
closed_slow
.
Lemma
closed_nil_closed
X
e
:
Closed
[]
e
→
Closed
X
e
.
Proof
.
intros
.
apply
is_closed_weaken
with
[]
.
done
.
set_solver
.
Qed
.
Hint
Immediate
closed_nil_closed
:
typeclass_instances
.
Hint
Extern
1000
(
Closed
_
(
Var
_))
=>
apply
closed_var
;
vm_compute
;
exact
I
:
typeclass_instances
.
Global
Instance
closed_app
e1
e2
:
C
e1
→
C
e2
→
C
(
App
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
Closed
/=
!
andb_True
.
Qed
.
Global
Instance
closed_binop
op
e1
e2
:
C
e1
→
C
e2
→
C
(
BinOp
op
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
Closed
/=
!
andb_True
.
Qed
.
Global
Instance
closed_pair
e1
e2
:
C
e1
→
C
e2
→
C
(
Pair
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
Closed
/=
!
andb_True
.
Qed
.
Global
Instance
closed_store
e1
e2
:
C
e1
→
C
e2
→
C
(
Store
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
Closed
/=
!
andb_True
.
Qed
.
Global
Instance
closed_if
e0
e1
e2
:
C
e0
→
C
e1
→
C
e2
→
C
(
If
e0
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
Closed
/=
!
andb_True
.
Qed
.
Global
Instance
closed_case
e0
e1
e2
:
C
e0
→
C
e1
→
C
e2
→
C
(
Case
e0
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
Closed
/=
!
andb_True
.
Qed
.
Global
Instance
closed_cas
e0
e1
e2
:
C
e0
→
C
e1
→
C
e2
→
C
(
CAS
e0
e1
e2
)
.
Proof
.
intros
.
by
rewrite
/
Closed
/=
!
andb_True
.
Qed
.
End
closed
.
(** Equality and other typeclass stuff *)
Instance
base_lit_dec_eq
(
l1
l2
:
base_lit
)
:
Decision
(
l1
=
l2
)
.
...
...
This diff is collapsed.
Click to expand it.
heap_lang/lib/par.v
+
3
−
3
View file @
700de5ad
...
...
@@ -32,14 +32,14 @@ Proof.
iSpecialize
(
"HΦ"
with
"* [-]"
);
first
by
iSplitL
"H1"
.
by
wp_let
.
Qed
.
Lemma
wp_par
(
Ψ1
Ψ2
:
val
→
iProp
)
(
e1
e2
:
expr
)
`{
!
Closed
[]
e1
,
Closed
[]
e2
}
(
Φ
:
val
→
iProp
)
:
Lemma
wp_par
(
Ψ1
Ψ2
:
val
→
iProp
)
(
e1
e2
:
expr
)
`{
!
Closed
[]
e1
,
Closed
[]
e2
}
(
Φ
:
val
→
iProp
)
:
heapN
⊥
N
→
(
heap_ctx
heapN
★
WP
e1
{{
Ψ1
}}
★
WP
e2
{{
Ψ2
}}
★
∀
v1
v2
,
Ψ1
v1
★
Ψ2
v2
-★
▷
Φ
(
v1
,
v2
)
%
V
)
⊢
WP
e1
||
e2
{{
Φ
}}
.
Proof
.
iIntros
(?)
"(#Hh&H1&H2&H)"
.
iApply
(
par_spec
Ψ1
Ψ2
);
auto
.
apply
i
s
_value
.
iIntros
(?)
"(#Hh&H1&H2&H)"
.
iApply
(
par_spec
Ψ1
Ψ2
);
[
done
|
apply
i
nto
_value
|]
.
iFrame
"Hh H"
.
iSplitL
"H1"
;
by
wp_let
.
Qed
.
End
proof
.
This diff is collapsed.
Click to expand it.
heap_lang/wp_tactics.v
+
2
−
1
View file @
700de5ad
...
...
@@ -10,7 +10,8 @@ Ltac wp_bind K :=
end
.
(* TODO: Do something better here *)
Ltac
wp_done
:=
fast_done
||
apply
is_value
||
apply
_
||
(
rewrite
/=
?to_of_val
;
fast_done
)
.
Ltac
wp_done
:=
fast_done
||
apply
into_value
||
apply
_
||
(
rewrite
/=
?to_of_val
;
fast_done
)
.
(* sometimes, we will have to do a final view shift, so only apply
pvs_intro if we obtain a consecutive wp *)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment