Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ike Mulder
Iris
Commits
7b00cda2
Commit
7b00cda2
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Group stuff about contractive functions together.
parent
2067a704
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/ofe.v
+19
-13
19 additions, 13 deletions
algebra/ofe.v
with
19 additions
and
13 deletions
algebra/ofe.v
+
19
−
13
View file @
7b00cda2
...
...
@@ -35,8 +35,6 @@ Record OfeMixin A `{Equiv A, Dist A} := {
mixin_dist_equivalence
n
:
Equivalence
(
dist
n
);
mixin_dist_S
n
x
y
:
x
≡
{
S
n
}
≡
y
→
x
≡
{
n
}
≡
y
}
.
Class
Contractive
`{
Dist
A
,
Dist
B
}
(
f
:
A
→
B
)
:=
contractive
n
x
y
:
(
∀
i
,
i
<
n
→
x
≡
{
i
}
≡
y
)
→
f
x
≡
{
n
}
≡
f
y
.
(** Bundeled version *)
Structure
ofeT
:=
OfeT'
{
...
...
@@ -129,17 +127,6 @@ Section cofe.
unfold
Proper
,
respectful
;
setoid_rewrite
equiv_dist
.
by
intros
x1
x2
Hx
y1
y2
Hy
n
;
rewrite
(
Hx
n
)
(
Hy
n
)
.
Qed
.
Lemma
contractive_S
{
B
:
ofeT
}
(
f
:
A
→
B
)
`{
!
Contractive
f
}
n
x
y
:
x
≡
{
n
}
≡
y
→
f
x
≡
{
S
n
}
≡
f
y
.
Proof
.
eauto
using
contractive
,
dist_le
with
omega
.
Qed
.
Lemma
contractive_0
{
B
:
ofeT
}
(
f
:
A
→
B
)
`{
!
Contractive
f
}
x
y
:
f
x
≡
{
0
}
≡
f
y
.
Proof
.
eauto
using
contractive
with
omega
.
Qed
.
Global
Instance
contractive_ne
{
B
:
ofeT
}
(
f
:
A
→
B
)
`{
!
Contractive
f
}
n
:
Proper
(
dist
n
==>
dist
n
)
f
|
100
.
Proof
.
by
intros
x
y
?;
apply
dist_S
,
contractive_S
.
Qed
.
Global
Instance
contractive_proper
{
B
:
ofeT
}
(
f
:
A
→
B
)
`{
!
Contractive
f
}
:
Proper
((
≡
)
==>
(
≡
))
f
|
100
:=
_
.
Lemma
conv_compl'
`{
Cofe
A
}
n
(
c
:
chain
A
)
:
compl
c
≡
{
n
}
≡
c
(
S
n
)
.
Proof
.
...
...
@@ -152,9 +139,28 @@ Section cofe.
Qed
.
End
cofe
.
(** Contractive functions *)
Class
Contractive
{
A
B
:
ofeT
}
(
f
:
A
→
B
)
:=
contractive
n
x
y
:
(
∀
i
,
i
<
n
→
x
≡
{
i
}
≡
y
)
→
f
x
≡
{
n
}
≡
f
y
.
Instance
const_contractive
{
A
B
:
ofeT
}
(
x
:
A
)
:
Contractive
(
@
const
A
B
x
)
.
Proof
.
by
intros
n
y1
y2
.
Qed
.
Section
contractive
.
Context
{
A
B
:
ofeT
}
(
f
:
A
→
B
)
`{
!
Contractive
f
}
.
Implicit
Types
x
y
:
A
.
Lemma
contractive_0
x
y
:
f
x
≡
{
0
}
≡
f
y
.
Proof
.
eauto
using
contractive
with
omega
.
Qed
.
Lemma
contractive_S
n
x
y
:
x
≡
{
n
}
≡
y
→
f
x
≡
{
S
n
}
≡
f
y
.
Proof
.
eauto
using
contractive
,
dist_le
with
omega
.
Qed
.
Global
Instance
contractive_ne
n
:
Proper
(
dist
n
==>
dist
n
)
f
|
100
.
Proof
.
by
intros
x
y
?;
apply
dist_S
,
contractive_S
.
Qed
.
Global
Instance
contractive_proper
:
Proper
((
≡
)
==>
(
≡
))
f
|
100
.
Proof
.
apply
(
ne_proper
_)
.
Qed
.
End
contractive
.
(** Mapping a chain *)
Program
Definition
chain_map
{
A
B
:
ofeT
}
(
f
:
A
→
B
)
`{
!∀
n
,
Proper
(
dist
n
==>
dist
n
)
f
}
(
c
:
chain
A
)
:
chain
B
:=
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment