Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ike Mulder
Iris
Commits
c5debb28
Commit
c5debb28
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More uPred_big_op properties.
parent
8cabea52
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/upred_big_op.v
+61
-3
61 additions, 3 deletions
algebra/upred_big_op.v
with
61 additions
and
3 deletions
algebra/upred_big_op.v
+
61
−
3
View file @
c5debb28
...
...
@@ -150,12 +150,12 @@ Section gmap.
Lemma
big_sepM_empty
Φ
:
([
★
map
]
k
↦
x
∈
∅
,
Φ
k
x
)
⊣⊢
True
.
Proof
.
by
rewrite
/
uPred_big_sepM
map_to_list_empty
.
Qed
.
Lemma
big_sepM_insert
Φ
(
m
:
gmap
K
A
)
i
x
:
Lemma
big_sepM_insert
Φ
m
i
x
:
m
!!
i
=
None
→
([
★
map
]
k
↦
y
∈
<
[
i
:=
x
]
>
m
,
Φ
k
y
)
⊣⊢
(
Φ
i
x
★
[
★
map
]
k
↦
y
∈
m
,
Φ
k
y
)
.
Proof
.
intros
?;
by
rewrite
/
uPred_big_sepM
map_to_list_insert
.
Qed
.
Lemma
big_sepM_delete
Φ
(
m
:
gmap
K
A
)
i
x
:
Lemma
big_sepM_delete
Φ
m
i
x
:
m
!!
i
=
Some
x
→
([
★
map
]
k
↦
y
∈
m
,
Φ
k
y
)
⊣⊢
(
Φ
i
x
★
[
★
map
]
k
↦
y
∈
delete
i
m
,
Φ
k
y
)
.
Proof
.
...
...
@@ -163,6 +163,10 @@ Section gmap.
by
rewrite
insert_delete
insert_id
.
Qed
.
Lemma
big_sepM_lookup
Φ
m
i
x
:
m
!!
i
=
Some
x
→
([
★
map
]
k
↦
y
∈
m
,
Φ
k
y
)
⊢
Φ
i
x
.
Proof
.
intros
.
by
rewrite
big_sepM_delete
//
sep_elim_l
.
Qed
.
Lemma
big_sepM_singleton
Φ
i
x
:
([
★
map
]
k
↦
y
∈
{[
i
:=
x
]},
Φ
k
y
)
⊣⊢
Φ
i
x
.
Proof
.
rewrite
-
insert_empty
big_sepM_insert
/=
;
last
auto
using
lookup_empty
.
...
...
@@ -176,7 +180,7 @@ Section gmap.
f_equiv
;
apply
reflexive_eq
,
list_fmap_ext
.
by
intros
[]
.
done
.
Qed
.
Lemma
big_sepM_insert_override
(
Φ
:
K
→
uPred
M
)
(
m
:
gmap
K
A
)
i
x
:
Lemma
big_sepM_insert_override
(
Φ
:
K
→
uPred
M
)
m
i
x
:
m
!!
i
=
Some
x
→
([
★
map
]
k
↦_
∈
<
[
i
:=
x
]
>
m
,
Φ
k
)
⊣⊢
([
★
map
]
k
↦_
∈
m
,
Φ
k
)
.
Proof
.
...
...
@@ -226,6 +230,33 @@ Section gmap.
Lemma
big_sepM_always_if
p
Φ
m
:
(
□
?p
[
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
★
map
]
k
↦
x
∈
m
,
□
?p
Φ
k
x
)
.
Proof
.
destruct
p
;
simpl
;
auto
using
big_sepM_always
.
Qed
.
Lemma
big_sepM_forall
Φ
m
:
(
∀
k
x
,
PersistentP
(
Φ
k
x
))
→
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
(
∀
k
x
,
m
!!
k
=
Some
x
→
Φ
k
x
)
.
Proof
.
intros
.
apply
(
anti_symm
_)
.
{
apply
forall_intro
=>
k
;
apply
forall_intro
=>
x
.
apply
impl_intro_l
,
const_elim_l
=>
?;
by
apply
big_sepM_lookup
.
}
rewrite
/
uPred_big_sepM
.
setoid_rewrite
<-
elem_of_map_to_list
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
];
csimpl
;
auto
.
rewrite
-
always_and_sep_l
;
apply
and_intro
.
-
rewrite
(
forall_elim
i
)
(
forall_elim
x
)
const_equiv
;
last
by
left
.
by
rewrite
True_impl
.
-
rewrite
-
IH
.
apply
forall_mono
=>
k
;
apply
forall_mono
=>
y
.
apply
impl_intro_l
,
const_elim_l
=>
?
.
rewrite
const_equiv
;
last
by
right
.
by
rewrite
True_impl
.
Qed
.
Lemma
big_sepM_impl
Φ
Ψ
m
:
(
□
(
∀
k
x
,
m
!!
k
=
Some
x
→
Φ
k
x
→
Ψ
k
x
)
∧
[
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊢
[
★
map
]
k
↦
x
∈
m
,
Ψ
k
x
.
Proof
.
rewrite
always_and_sep_l
.
do
2
setoid_rewrite
always_forall
.
setoid_rewrite
always_impl
;
setoid_rewrite
always_const
.
rewrite
-
big_sepM_forall
-
big_sepM_sepM
.
apply
big_sepM_mono
;
auto
=>
k
x
?
.
by
rewrite
-
always_wand_impl
always_elim
wand_elim_l
.
Qed
.
End
gmap
.
(** ** Big ops over finite sets *)
...
...
@@ -290,6 +321,9 @@ Section gset.
by
rewrite
-
union_difference_L
;
last
set_solver
.
Qed
.
Lemma
big_sepS_elem_of
Φ
X
x
:
x
∈
X
→
([
★
set
]
y
∈
X
,
Φ
y
)
⊢
Φ
x
.
Proof
.
intros
.
by
rewrite
big_sepS_delete
//
sep_elim_l
.
Qed
.
Lemma
big_sepS_singleton
Φ
x
:
([
★
set
]
y
∈
{[
x
]},
Φ
y
)
⊣⊢
Φ
x
.
Proof
.
intros
.
by
rewrite
/
uPred_big_sepS
elements_singleton
/=
right_id
.
Qed
.
...
...
@@ -318,6 +352,30 @@ Section gset.
Lemma
big_sepS_always_if
q
Φ
X
:
(
□
?q
[
★
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
★
set
]
y
∈
X
,
□
?q
Φ
y
)
.
Proof
.
destruct
q
;
simpl
;
auto
using
big_sepS_always
.
Qed
.
Lemma
big_sepS_forall
Φ
X
:
(
∀
x
,
PersistentP
(
Φ
x
))
→
([
★
set
]
x
∈
X
,
Φ
x
)
⊣⊢
(
∀
x
,
■
(
x
∈
X
)
→
Φ
x
)
.
Proof
.
intros
.
apply
(
anti_symm
_)
.
{
apply
forall_intro
=>
x
.
apply
impl_intro_l
,
const_elim_l
=>
?;
by
apply
big_sepS_elem_of
.
}
rewrite
/
uPred_big_sepS
.
setoid_rewrite
<-
elem_of_elements
.
induction
(
elements
X
)
as
[|
x
l
IH
];
csimpl
;
auto
.
rewrite
-
always_and_sep_l
;
apply
and_intro
.
-
rewrite
(
forall_elim
x
)
const_equiv
;
last
by
left
.
by
rewrite
True_impl
.
-
rewrite
-
IH
.
apply
forall_mono
=>
y
.
apply
impl_intro_l
,
const_elim_l
=>
?
.
rewrite
const_equiv
;
last
by
right
.
by
rewrite
True_impl
.
Qed
.
Lemma
big_sepS_impl
Φ
Ψ
X
:
(
□
(
∀
x
,
■
(
x
∈
X
)
→
Φ
x
→
Ψ
x
)
∧
[
★
set
]
x
∈
X
,
Φ
x
)
⊢
[
★
set
]
x
∈
X
,
Ψ
x
.
Proof
.
rewrite
always_and_sep_l
always_forall
.
setoid_rewrite
always_impl
;
setoid_rewrite
always_const
.
rewrite
-
big_sepS_forall
-
big_sepS_sepS
.
apply
big_sepS_mono
;
auto
=>
x
?
.
by
rewrite
-
always_wand_impl
always_elim
wand_elim_l
.
Qed
.
End
gset
.
(** ** Persistence *)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment