Skip to content
Snippets Groups Projects
Commit cca77f9f authored by Ralf Jung's avatar Ralf Jung
Browse files

strengthen recv_split: no more skip

parent dade67f8
No related branches found
No related tags found
No related merge requests found
......@@ -4,7 +4,7 @@ Import uPred.
Definition worker (n : Z) := (λ: "b" "y", wait "b" ;; (!"y") 'n)%L.
Definition client := (let: "y" := ref '0 in let: "b" := newbarrier '() in
Fork (Skip ;; Fork (worker 12 "b" "y") ;; worker 17 "b" "y") ;;
Fork (Fork (worker 12 "b" "y") ;; worker 17 "b" "y") ;;
"y" <- (λ: "z", "z" + '42) ;; signal "b")%L.
Section client.
......@@ -58,9 +58,9 @@ Section client.
apply sep_intro_True_r; first done. apply: always_intro.
apply forall_intro=>n. wp_let. wp_op. by apply const_intro. }
(* The two spawned threads, the waiters. *)
ewp eapply recv_split. rewrite comm. apply sep_mono.
{ apply recv_mono. rewrite y_inv_split. done. }
apply wand_intro_r. wp_seq. ewp eapply wp_fork.
rewrite recv_mono; last exact: y_inv_split.
rewrite (recv_split _ _ ) // pvs_frame_l. apply wp_strip_pvs.
ewp eapply wp_fork.
rewrite [heap_ctx _]always_sep_dup !assoc [(_ recv _ _ _ _)%I]comm.
rewrite -!assoc assoc. apply sep_mono.
- wp_seq. by rewrite -worker_safe comm.
......
......@@ -245,20 +245,21 @@ Proof.
rewrite eq_sym. eauto with I.
Qed.
Lemma recv_split l P1 P2 Φ :
(recv l (P1 P2) (recv l P1 recv l P2 -★ Φ '())) || Skip {{ Φ }}.
Lemma recv_split E l P1 P2 :
nclose N E
recv l (P1 P2) |={E}=> recv l P1 recv l P2.
Proof.
rename P1 into R1. rename P2 into R2.
rewrite {1}/recv /barrier_ctx. rewrite sep_exist_r.
rename P1 into R1. rename P2 into R2. intros HN.
rewrite {1}/recv /barrier_ctx.
apply exist_elim=>γ. rewrite sep_exist_r. apply exist_elim=>P.
rewrite sep_exist_r. apply exist_elim=>Q. rewrite sep_exist_r.
apply exist_elim=>i. rewrite -!assoc. apply const_elim_sep_l=>?. rewrite -wp_pvs.
apply exist_elim=>Q. apply exist_elim=>i. rewrite -!assoc.
apply const_elim_sep_l=>?. rewrite -pvs_trans'.
(* I think some evars here are better than repeating *everything* *)
eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl;
eapply pvs_mk_fsa, (sts_fsaS _ pvs_fsa) with (N0:=N) (γ0:=γ); simpl;
eauto with I ndisj.
rewrite !assoc [(_ sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r.
apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc.
apply const_elim_sep_l=>Hs. rewrite -wp_pvs. wp_seq.
apply const_elim_sep_l=>Hs. rewrite /pvs_fsa.
eapply sep_elim_True_l.
{ eapply saved_prop_alloc_strong with (P0 := R1) (G := I). }
rewrite pvs_frame_r. apply pvs_strip_pvs. rewrite sep_exist_r.
......@@ -274,22 +275,23 @@ Proof.
- rewrite -(exist_intro (State Low ({[i1]} ({[i2]} (I {[i]}))))).
rewrite -(exist_intro ({[Change i1 ]} {[ Change i2 ]})).
rewrite [( sts.steps _ _)%I]const_equiv; last by eauto using split_step.
rewrite left_id -later_intro {1 3}/barrier_inv.
rewrite left_id {1 3}/barrier_inv.
(* FIXME ssreflect rewrite fails if there are evars around. Also, this is very slow because we don't have a proof mode. *)
rewrite -(waiting_split _ _ _ Q R1 R2); [|done..].
rewrite {1}[saved_prop_own i1 _]always_sep_dup.
rewrite {1}[saved_prop_own i2 _]always_sep_dup.
ecancel [l _; saved_prop_own i1 _; saved_prop_own i2 _; waiting _ _;
_ -★ _; saved_prop_own i _]%I.
apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
rewrite {1}[saved_prop_own i2 _]always_sep_dup !later_sep.
rewrite -![( saved_prop_own _ _)%I]later_intro.
ecancel [ l _; saved_prop_own i1 _; saved_prop_own i2 _ ;
waiting _ _ ; (Q -★ _) ; saved_prop_own i _]%I.
apply wand_intro_l. rewrite !assoc. rewrite /recv.
rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
do 2 rewrite !(assoc ()%I) [(_ sts_ownS _ _ _)%I]comm.
rewrite -!assoc. rewrite [(sts_ownS _ _ _ _ _)%I]assoc -pvs_frame_r.
apply sep_mono.
rewrite -!assoc. rewrite [(sts_ownS _ _ _ _ _)%I]assoc.
rewrite -pvs_frame_r. apply sep_mono.
* rewrite -sts_ownS_op; eauto using i_states_closed.
+ apply sts_own_weaken; eauto using sts.closed_op, i_states_closed.
set_solver.
+ apply sts_own_weaken;
eauto using sts.closed_op, i_states_closed. set_solver.
+ set_solver.
* rewrite const_equiv // !left_id.
rewrite {1}[heap_ctx _]always_sep_dup {1}[sts_ctx _ _ _]always_sep_dup.
......@@ -301,13 +303,14 @@ Proof.
- rewrite -(exist_intro (State High ({[i1]} ({[i2]} (I {[i]}))))).
rewrite -(exist_intro ({[Change i1 ]} {[ Change i2 ]})).
rewrite const_equiv; last by eauto using split_step.
rewrite left_id -later_intro {1 3}/barrier_inv.
rewrite left_id {1 3}/barrier_inv.
rewrite -(ress_split _ _ _ Q R1 R2); [|done..].
rewrite {1}[saved_prop_own i1 _]always_sep_dup.
rewrite {1}[saved_prop_own i2 _]always_sep_dup.
ecancel [l _; saved_prop_own i1 _; saved_prop_own i2 _; ress _;
_ -★ _; saved_prop_own i _]%I.
apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
rewrite {1}[saved_prop_own i2 _]always_sep_dup !later_sep.
rewrite -![( saved_prop_own _ _)%I]later_intro.
ecancel [ l _; saved_prop_own i1 _; saved_prop_own i2 _ ;
ress _ ; (Q -★ _) ; saved_prop_own i _]%I.
apply wand_intro_l. rewrite !assoc. rewrite /recv.
rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
do 2 rewrite !(assoc ()%I) [(_ sts_ownS _ _ _)%I]comm.
......
......@@ -15,7 +15,7 @@ Lemma barrier_spec (heapN N : namespace) :
( P, heap_ctx heapN {{ True }} newbarrier '() {{ λ v, l, v = LocV l recv l P send l P }})
( l P, {{ send l P P }} signal (LocV l) {{ λ _, True }})
( l P, {{ recv l P }} wait (LocV l) {{ λ _, P }})
( l P Q, {{ recv l (P Q) }} Skip {{ λ _, recv l P recv l Q }})
( l P Q, recv l (P Q) ={N}=> recv l P recv l Q)
( l P Q, (P -★ Q) (recv l P -★ recv l Q)).
Proof.
intros HN.
......@@ -28,8 +28,7 @@ Proof.
- intros l P. apply ht_alt. by rewrite -signal_spec right_id.
- intros l P. apply ht_alt.
by rewrite -(wait_spec heapN N l P) wand_diag right_id.
- intros l P Q. apply ht_alt. rewrite -(recv_split heapN N l P Q).
apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
- intros l P Q. apply vs_alt. rewrite -(recv_split heapN N N l P Q) //.
- intros l P Q. apply recv_strengthen.
Qed.
End spec.
......@@ -248,3 +248,8 @@ Proof.
rewrite /pvs_fsa.
split; auto using pvs_mask_frame_mono, pvs_trans3, pvs_frame_r.
Qed.
Lemma pvs_mk_fsa {Λ Σ} E (P Q : iProp Λ Σ) :
P pvs_fsa E (λ _, Q)
P |={E}=> Q.
Proof. by intros ?. Qed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment