Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ike Mulder
Iris
Commits
eacc4197
Commit
eacc4197
authored
8 years ago
by
Zhen Zhang
Browse files
Options
Downloads
Patches
Plain Diff
Abstract lock interface
parent
a1171d02
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
_CoqProject
+1
-0
1 addition, 0 deletions
_CoqProject
heap_lang/lib/lock.v
+40
-80
40 additions, 80 deletions
heap_lang/lib/lock.v
heap_lang/lib/spin_lock.v
+91
-0
91 additions, 0 deletions
heap_lang/lib/spin_lock.v
heap_lang/lib/ticket_lock.v
+70
-61
70 additions, 61 deletions
heap_lang/lib/ticket_lock.v
with
202 additions
and
141 deletions
_CoqProject
+
1
−
0
View file @
eacc4197
...
...
@@ -97,6 +97,7 @@ heap_lang/lib/spawn.v
heap_lang/lib/par.v
heap_lang/lib/assert.v
heap_lang/lib/lock.v
heap_lang/lib/spin_lock.v
heap_lang/lib/ticket_lock.v
heap_lang/lib/counter.v
heap_lang/lib/barrier/barrier.v
...
...
This diff is collapsed.
Click to expand it.
heap_lang/lib/lock.v
+
40
−
80
View file @
eacc4197
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
proofmode
Require
Import
invariants
tactics
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
algebra
Require
Import
excl
.
(** Abstract Lock Interface **)
From
iris
.
heap_lang
Require
Import
heap
notation
.
Structure
lock
Σ
`{
!
heapG
Σ
}
:=
Lock
{
(* -- operations -- *)
newlock
:
val
;
acquire
:
val
;
release
:
val
;
(* -- predicates -- *)
(* name is used to associate locked with is_lock *)
name
:
Type
;
is_lock
(
N
:
namespace
)
(
γ
:
name
)
(
lock
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
;
locked
(
γ
:
name
)
:
iProp
Σ
;
(* -- general properties -- *)
is_lock_ne
N
γ
lk
n
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
N
γ
lk
);
is_lock_persistent
N
γ
lk
R
:
PersistentP
(
is_lock
N
γ
lk
R
);
locked_timeless
γ
:
TimelessP
(
locked
γ
);
locked_exclusive
γ
:
locked
γ
★
locked
γ
⊢
False
;
(* -- operation specs -- *)
newlock_spec
N
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
l
γ
,
is_lock
N
γ
l
R
-★
Φ
l
)
⊢
WP
newlock
#
()
{{
Φ
}};
acquire_spec
N
γ
lk
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
N
γ
lk
R
★
(
locked
γ
-★
R
-★
Φ
#
())
⊢
WP
acquire
lk
{{
Φ
}};
release_spec
N
γ
lk
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
N
γ
lk
R
★
locked
γ
★
R
★
Φ
#
()
⊢
WP
release
lk
{{
Φ
}}
}
.
Arguments
newlock
{_
_}
_
.
Arguments
acquire
{_
_}
_
.
Arguments
release
{_
_}
_
.
Arguments
is_lock
{_
_}
_
_
_
_
_
.
Arguments
locked
{_
_}
_
_
.
Existing
Instances
is_lock_ne
is_lock_persistent
locked_timeless
.
Instance
is_lock_proper
Σ
`{
!
heapG
Σ
}
(
L
:
lock
Σ
)
N
lk
R
:
Proper
((
≡
)
==>
(
≡
))
(
is_lock
L
N
lk
R
)
:=
ne_proper
_
.
Definition
newlock
:
val
:=
λ
:
<>
,
ref
#
false
.
Definition
acquire
:
val
:=
rec
:
"acquire"
"l"
:=
if
:
CAS
"l"
#
false
#
true
then
#
()
else
"acquire"
"l"
.
Definition
release
:
val
:=
λ
:
"l"
,
"l"
<-
#
false
.
Global
Opaque
newlock
acquire
release
.
(** The CMRA we need. *)
(* Not bundling heapG, as it may be shared with other users. *)
Class
lockG
Σ
:=
LockG
{
lock_tokG
:>
inG
Σ
(
exclR
unitC
)
}
.
Definition
lockΣ
:
gFunctors
:=
#
[
GFunctor
(
constRF
(
exclR
unitC
))]
.
Instance
subG_lockΣ
{
Σ
}
:
subG
lockΣ
Σ
→
lockG
Σ
.
Proof
.
intros
[?
%
subG_inG
_]
%
subG_inv
.
split
;
apply
_
.
Qed
.
Section
proof
.
Context
`{
!
heapG
Σ
,
!
lockG
Σ
}
(
N
:
namespace
)
.
Definition
lock_inv
(
γ
:
gname
)
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
b
:
bool
,
l
↦
#
b
★
if
b
then
True
else
own
γ
(
Excl
())
★
R
)
%
I
.
Definition
is_lock
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
γ
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
l
R
))
%
I
.
Definition
locked
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
γ
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
l
R
)
∧
own
γ
(
Excl
()))
%
I
.
Global
Instance
lock_inv_ne
n
γ
l
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
l
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
l
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
locked_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
locked
l
)
.
Proof
.
solve_proper
.
Qed
.
(** The main proofs. *)
Global
Instance
is_lock_persistent
l
R
:
PersistentP
(
is_lock
l
R
)
.
Proof
.
apply
_
.
Qed
.
Lemma
locked_is_lock
l
R
:
locked
l
R
⊢
is_lock
l
R
.
Proof
.
rewrite
/
is_lock
.
iDestruct
1
as
(
γ
)
"(?&?&?&_)"
;
eauto
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
l
,
is_lock
l
R
-★
Φ
#
l
)
⊢
WP
newlock
#
()
{{
Φ
}}
.
Proof
.
iIntros
(?)
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
/=.
wp_seq
.
wp_alloc
l
as
"Hl"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
)
"Hγ"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ
l
R
)
with
"[-HΦ]"
)
as
"#?"
.
{
iIntros
"!>"
.
iExists
false
.
by
iFrame
.
}
iVsIntro
.
iApply
"HΦ"
.
iExists
γ
;
eauto
.
Qed
.
Lemma
acquire_spec
l
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
l
R
★
(
locked
l
R
-★
R
-★
Φ
#
())
⊢
WP
acquire
#
l
{{
Φ
}}
.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
)
"(%&#?&#?)"
.
iLöb
as
"IH"
.
wp_rec
.
wp_bind
(
CAS
_
_
_)
%
E
.
iInv
N
as
([])
"[Hl HR]"
"Hclose"
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl]"
);
first
(
iNext
;
iExists
true
;
eauto
)
.
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
-
wp_cas_suc
.
iDestruct
"HR"
as
"[Hγ HR]"
.
iVs
(
"Hclose"
with
"[Hl]"
);
first
(
iNext
;
iExists
true
;
eauto
)
.
iVsIntro
.
wp_if
.
iApply
(
"HΦ"
with
"[-HR] HR"
)
.
iExists
γ
;
eauto
.
Qed
.
Lemma
release_spec
R
l
(
Φ
:
val
→
iProp
Σ
)
:
locked
l
R
★
R
★
Φ
#
()
⊢
WP
release
#
l
{{
Φ
}}
.
Proof
.
iIntros
"(Hl&HR&HΦ)"
;
iDestruct
"Hl"
as
(
γ
)
"(% & #? & #? & Hγ)"
.
rewrite
/
release
/=.
wp_let
.
iInv
N
as
(
b
)
"[Hl _]"
"Hclose"
.
wp_store
.
iFrame
"HΦ"
.
iApply
"Hclose"
.
iNext
.
iExists
false
.
by
iFrame
.
Qed
.
End
proof
.
This diff is collapsed.
Click to expand it.
heap_lang/lib/spin_lock.v
0 → 100644
+
91
−
0
View file @
eacc4197
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
proofmode
Require
Import
invariants
tactics
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
algebra
Require
Import
excl
.
From
iris
.
heap_lang
.
lib
Require
Import
lock
.
Definition
newlock
:
val
:=
λ
:
<>
,
ref
#
false
.
Definition
acquire
:
val
:=
rec
:
"acquire"
"l"
:=
if
:
CAS
"l"
#
false
#
true
then
#
()
else
"acquire"
"l"
.
Definition
release
:
val
:=
λ
:
"l"
,
"l"
<-
#
false
.
Global
Opaque
newlock
acquire
release
.
(** The CMRA we need. *)
(* Not bundling heapG, as it may be shared with other users. *)
Class
lockG
Σ
:=
LockG
{
lock_tokG
:>
inG
Σ
(
exclR
unitC
)
}
.
Definition
lockΣ
:
gFunctors
:=
#
[
GFunctor
(
constRF
(
exclR
unitC
))]
.
Instance
subG_lockΣ
{
Σ
}
:
subG
lockΣ
Σ
→
lockG
Σ
.
Proof
.
intros
[?
%
subG_inG
_]
%
subG_inv
.
split
;
apply
_
.
Qed
.
Section
proof
.
Context
`{
!
heapG
Σ
,
!
lockG
Σ
}
(
N
:
namespace
)
.
Definition
lock_inv
(
γ
:
gname
)
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
b
:
bool
,
l
↦
#
b
★
if
b
then
True
else
own
γ
(
Excl
())
★
R
)
%
I
.
Definition
is_lock
(
γ
:
gname
)
(
lk
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
(
l
:
loc
),
heapN
⊥
N
∧
heap_ctx
∧
lk
=
#
l
∧
inv
N
(
lock_inv
γ
l
R
))
%
I
.
Definition
locked
(
γ
:
gname
):
iProp
Σ
:=
own
γ
(
Excl
())
%
I
.
Lemma
locked_exclusive
(
γ
:
gname
):
(
locked
γ
★
locked
γ
⊢
False
)
%
I
.
Proof
.
iIntros
"[Hl Hl']"
.
iCombine
"Hl"
"Hl'"
as
"Hl"
.
by
iDestruct
(
own_valid
with
"Hl"
)
as
%
[]
.
Qed
.
Global
Instance
lock_inv_ne
n
γ
l
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
l
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
γ
l
)
.
Proof
.
solve_proper
.
Qed
.
(* Global Instance locked_ne n γ : Proper (dist n ==> dist n) (locked γ). *)
(* Proof. solve_proper. Qed. *)
(** The main proofs. *)
Global
Instance
is_lock_persistent
γ
l
R
:
PersistentP
(
is_lock
γ
l
R
)
.
Proof
.
apply
_
.
Qed
.
(* Lemma locked_is_lock lk R : locked lk R ⊢ is_lock lk R. *)
(* Proof. rewrite /is_lock. iDestruct 1 as (γ l) "(?&?&?&?&_)". iExists γ, l. auto. Qed. *)
Global
Instance
locked_timeless
γ
:
TimelessP
(
locked
γ
)
.
Proof
.
apply
_
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
lk
γ
,
is_lock
γ
lk
R
-★
Φ
lk
)
⊢
WP
newlock
#
()
{{
Φ
}}
.
Proof
.
iIntros
(?)
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
.
wp_seq
.
wp_alloc
l
as
"Hl"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
)
"Hγ"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ
l
R
)
with
"[-HΦ]"
)
as
"#?"
.
{
iIntros
"!>"
.
iExists
false
.
by
iFrame
.
}
iVsIntro
.
iApply
"HΦ"
.
iExists
l
.
eauto
.
Qed
.
Lemma
acquire_spec
γ
lk
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
γ
lk
R
★
(
locked
γ
-★
R
-★
Φ
#
())
⊢
WP
acquire
lk
{{
Φ
}}
.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
l
)
"(% & #? & % & #?)"
.
subst
.
iLöb
as
"IH"
.
wp_rec
.
wp_bind
(
CAS
_
_
_)
%
E
.
iInv
N
as
([])
"[Hl HR]"
"Hclose"
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl]"
);
first
(
iNext
;
iExists
true
;
eauto
)
.
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
-
wp_cas_suc
.
iDestruct
"HR"
as
"[Hγ HR]"
.
iVs
(
"Hclose"
with
"[Hl]"
);
first
(
iNext
;
iExists
true
;
eauto
)
.
iVsIntro
.
wp_if
.
iApply
(
"HΦ"
with
"[-HR] HR"
)
.
by
iFrame
.
Qed
.
Lemma
release_spec
γ
lk
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
γ
lk
R
★
locked
γ
★
R
★
Φ
#
()
⊢
WP
release
lk
{{
Φ
}}
.
Proof
.
iIntros
"(Hlock & Hlocked & HR & HΦ)"
.
iDestruct
"Hlock"
as
(
l
)
"(% & #? & % & #?)"
.
subst
.
rewrite
/
release
.
wp_let
.
iInv
N
as
(
b
)
"[Hl _]"
"Hclose"
.
wp_store
.
iFrame
"HΦ"
.
iApply
"Hclose"
.
iNext
.
iExists
false
.
by
iFrame
.
Qed
.
End
proof
.
Definition
spin_lock
`{
!
heapG
Σ
,
!
lockG
Σ
}
:=
Lock
_
_
newlock
acquire
release
gname
is_lock
locked
_
_
_
locked_exclusive
newlock_spec
acquire_spec
release_spec
.
This diff is collapsed.
Click to expand it.
heap_lang/lib/ticket_lock.v
+
70
−
61
View file @
eacc4197
...
...
@@ -4,6 +4,7 @@ From iris.program_logic Require Import auth.
From
iris
.
proofmode
Require
Import
invariants
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
algebra
Require
Import
gset
.
From
iris
.
heap_lang
.
lib
Require
Import
lock
.
Import
uPred
.
Definition
wait_loop
:
val
:=
...
...
@@ -43,65 +44,70 @@ Instance subG_tlockΣ {Σ} : subG tlockΣ Σ → tlockG Σ.
Proof
.
intros
[?
[?
%
subG_inG
_]
%
subG_inv
]
%
subG_inv
.
split
;
apply
_
.
Qed
.
Section
proof
.
Context
`{
!
heapG
Σ
,
!
tlockG
Σ
}
(
N
:
namespace
)
(
HN
:
heapN
⊥
N
)
.
Context
`{
!
heapG
Σ
,
!
tlockG
Σ
}
(
N
:
namespace
)
.
Definition
tickets_inv
(
n
:
nat
)
(
gs
:
gset_disjUR
nat
)
:
iProp
Σ
:=
(
gs
=
GSet
(
seq_set
0
n
))
%
I
.
Definition
tickets_inv
(
n
:
nat
)
(
gs
:
gset_disjUR
nat
)
:
iProp
Σ
:=
(
gs
=
GSet
(
seq_set
0
n
))
%
I
.
Definition
lock_inv
(
γ1
γ2
:
gname
)
(
lo
ln
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
(
o
n
:
nat
),
Definition
lock_inv
(
γ1
γ2
:
gname
)
(
lo
ln
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
(
o
n
:
nat
),
lo
↦
#
o
★
ln
↦
#
n
★
auth_inv
γ1
(
tickets_inv
n
)
★
((
own
γ2
(
Excl
())
★
R
)
∨
auth_own
γ1
(
GSet
{[
o
]})))
%
I
.
Definition
is_lock
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
γ1
γ2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(
#
lo
,
#
ln
)
%
V
∧
inv
N
(
lock_inv
γ1
γ2
lo
ln
R
))
%
I
.
Definition
issued
(
l
:
val
)
(
x
:
nat
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
γ1
γ2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(
#
lo
,
#
ln
)
%
V
∧
inv
N
(
lock_inv
γ1
γ2
lo
ln
R
)
∧
auth_own
γ1
(
GSet
{[
x
]}))
%
I
.
Definition
locked
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
γ1
γ2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(
#
lo
,
#
ln
)
%
V
∧
inv
N
(
lock_inv
γ1
γ2
lo
ln
R
)
∧
own
γ2
(
Excl
()))
%
I
.
Global
Instance
lock_inv_ne
n
γ1
γ2
lo
ln
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ1
γ2
lo
ln
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
l
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
locked_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
locked
l
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_persistent
l
R
:
PersistentP
(
is_lock
l
R
)
.
Proof
.
apply
_
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heap_ctx
★
R
★
(
∀
l
,
is_lock
l
R
-★
Φ
l
)
⊢
WP
newlock
#
()
{{
Φ
}}
.
Definition
is_lock
(
γs
:
gname
*
gname
)
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
(
lo
ln
:
loc
),
heapN
⊥
N
∧
heap_ctx
∧
l
=
(
#
lo
,
#
ln
)
%
V
∧
inv
N
(
lock_inv
(
fst
γs
)
(
snd
γs
)
lo
ln
R
))
%
I
.
Definition
issued
(
γs
:
gname
*
gname
)
(
l
:
val
)
(
x
:
nat
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
(
lo
ln
:
loc
),
heapN
⊥
N
∧
heap_ctx
∧
l
=
(
#
lo
,
#
ln
)
%
V
∧
inv
N
(
lock_inv
(
fst
γs
)
(
snd
γs
)
lo
ln
R
)
∧
auth_own
(
fst
γs
)
(
GSet
{[
x
]}))
%
I
.
Definition
locked
(
γs
:
gname
*
gname
)
:
iProp
Σ
:=
own
(
snd
γs
)
(
Excl
())
%
I
.
Global
Instance
lock_inv_ne
n
γ1
γ2
lo
ln
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ1
γ2
lo
ln
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
γs
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
γs
l
)
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_persistent
γs
l
R
:
PersistentP
(
is_lock
γs
l
R
)
.
Proof
.
apply
_
.
Qed
.
Global
Instance
locked_timeless
γs
:
TimelessP
(
locked
γs
)
.
Proof
.
apply
_
.
Qed
.
Lemma
locked_exclusive
(
γs
:
gname
*
gname
)
:
(
locked
γs
★
locked
γs
⊢
False
)
%
I
.
Proof
.
iIntros
"[Hl Hl']"
.
iCombine
"Hl"
"Hl'"
as
"Hl"
.
by
iDestruct
(
own_valid
with
"Hl"
)
as
%
[]
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
lk
γs
,
is_lock
γs
lk
R
-★
Φ
lk
)
⊢
WP
newlock
#
()
{{
Φ
}}
.
Proof
.
iIntros
(
HN
)
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
.
wp_seq
.
wp_alloc
lo
as
"Hlo"
.
wp_alloc
ln
as
"Hln"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ2
)
"Hγ2"
;
first
done
.
iVs
(
own_alloc_strong
(
Auth
(
Excl'
∅
)
∅
)
{[
γ2
]})
as
(
γ1
)
"[% Hγ1]"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ1
γ2
lo
ln
R
)
with
"[-HΦ]"
)
.
-
iNext
.
rewrite
/
lock_inv
.
iExists
0
%
nat
,
0
%
nat
.
iFrame
.
iSplitL
"Hγ1"
.
+
rewrite
/
auth_inv
.
iExists
(
GSet
∅
)
.
by
iFrame
.
+
iLeft
.
by
iFrame
.
-
iVsIntro
.
iSpecialize
(
"HΦ"
$!
(
#
lo
,
#
ln
)
%
V
(
γ1
,
γ2
))
.
iApply
"HΦ"
.
iExists
lo
,
ln
.
iSplit
;
by
eauto
.
Qed
.
Lemma
wait_loop_spec
γs
l
x
R
(
Φ
:
val
→
iProp
Σ
)
:
issued
γs
l
x
R
★
(
locked
γs
-★
R
-★
Φ
#
())
⊢
WP
wait_loop
#
x
l
{{
Φ
}}
.
Proof
.
iIntros
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
/=.
wp_seq
.
wp_alloc
lo
as
"Hlo"
.
wp_alloc
ln
as
"Hln"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ2
)
"Hγ2"
;
first
done
.
iVs
(
own_alloc_strong
(
Auth
(
Excl'
∅
)
∅
)
{[
γ2
]})
as
(
γ1
)
"[% Hγ1]"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ1
γ2
lo
ln
R
)
with
"[-HΦ]"
)
.
{
iNext
.
rewrite
/
lock_inv
.
iExists
0
%
nat
,
0
%
nat
.
iFrame
.
iSplitL
"Hγ1"
.
{
rewrite
/
auth_inv
.
iExists
(
GSet
∅
)
.
by
iFrame
.
}
iLeft
.
by
iFrame
.
}
iVsIntro
.
iApply
"HΦ"
.
iExists
γ1
,
γ2
,
lo
,
ln
.
iSplit
;
by
auto
.
Qed
.
Lemma
wait_loop_spec
l
x
R
(
Φ
:
val
→
iProp
Σ
)
:
issued
l
x
R
★
(
∀
l
,
locked
l
R
-★
R
-★
Φ
#
())
⊢
WP
wait_loop
#
x
l
{{
Φ
}}
.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ1
γ2
lo
ln
)
"(#? & % & #? & Ht)"
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
lo
ln
)
"(% & #? & % & #? & Ht)"
.
iLöb
as
"IH"
.
wp_rec
.
subst
.
wp_let
.
wp_proj
.
wp_bind
(
!
_)
%
E
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Ha]]"
"Hclose"
.
wp_load
.
destruct
(
decide
(
x
=
o
))
as
[
->
|
Hneq
]
.
...
...
@@ -110,7 +116,7 @@ Proof.
{
iNext
.
iExists
o
,
n
.
iFrame
.
eauto
.
}
iVsIntro
.
wp_let
.
wp_op
=>[_|[]]
//.
wp_if
.
iVsIntro
.
iApply
(
"HΦ"
with
"[-HR] HR"
)
.
iExists
γ1
,
γ2
,
lo
,
ln
;
eauto
.
iApply
(
"HΦ"
with
"[-HR] HR"
)
.
eauto
.
+
iExFalso
.
iCombine
"Ht"
"Haown"
as
"Haown"
.
iDestruct
(
auth_own_valid
with
"Haown"
)
as
%
?
%
gset_disj_valid_op
.
set_solver
.
...
...
@@ -120,10 +126,10 @@ Proof.
wp_if
.
iApply
(
"IH"
with
"Ht"
)
.
by
iExact
"HΦ"
.
Qed
.
Lemma
acquire_spec
l
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
l
R
★
(
∀
l
,
locked
l
R
-★
R
-★
Φ
#
())
⊢
WP
acquire
l
{{
Φ
}}
.
Lemma
acquire_spec
γs
l
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
γs
l
R
★
(
locked
γs
-★
R
-★
Φ
#
())
⊢
WP
acquire
l
{{
Φ
}}
.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ1
γ2
lo
ln
)
"(#? & % & #?)"
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
lo
ln
)
"(
% &
#? & % & #?)"
.
iLöb
as
"IH"
.
wp_rec
.
wp_bind
(
!
_)
%
E
.
subst
.
wp_proj
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Ha]]"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hlo Hln Ha]"
)
.
...
...
@@ -145,8 +151,8 @@ Proof.
rewrite
Nat2Z
.
inj_succ
-
Z
.
add_1_r
.
iFrame
.
iExists
(
GSet
(
seq_set
0
(
S
n
)))
.
by
iFrame
.
}
iVsIntro
.
wp_if
.
iApply
(
wait_loop_spec
(
#
lo
,
#
ln
))
.
iSplitR
"HΦ"
;
last
by
done
.
iApply
(
wait_loop_spec
γs
(
#
lo
,
#
ln
))
.
iSplitR
"HΦ"
;
last
by
auto
.
rewrite
/
issued
/
auth_own
;
eauto
10
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hlo' Hln' Hainv Haown]"
)
.
...
...
@@ -154,10 +160,10 @@ Proof.
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
Qed
.
Lemma
release_spec
R
l
(
Φ
:
val
→
iProp
Σ
):
lock
ed
l
R
★
R
★
Φ
#
()
⊢
WP
release
l
{{
Φ
}}
.
Lemma
release_spec
γs
l
R
(
Φ
:
val
→
iProp
Σ
):
is_
lock
γs
l
R
★
locked
γs
★
R
★
Φ
#
()
⊢
WP
release
l
{{
Φ
}}
.
Proof
.
iIntros
"(Hl & HR & HΦ)"
;
iDestruct
"Hl"
as
(
γ1
γ2
lo
ln
)
"(#? & % & #?
& Hγ
)"
.
iIntros
"(Hl &
Hγ &
HR & HΦ)"
.
iDestruct
"Hl"
as
(
lo
ln
)
"(
% &
#? & % & #?)"
.
iLöb
as
"IH"
.
wp_rec
.
subst
.
wp_proj
.
wp_bind
(
!
_)
%
E
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Hr]]"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hlo Hln Hr]"
)
.
...
...
@@ -182,3 +188,6 @@ Qed.
End
proof
.
Typeclasses
Opaque
is_lock
issued
locked
.
Definition
ticket_lock
`{
!
heapG
Σ
,
!
tlockG
Σ
}
:=
Lock
_
_
newlock
acquire
release
(
gname
*
gname
)
is_lock
locked
_
_
_
locked_exclusive
newlock_spec
acquire_spec
release_spec
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment