Skip to content
Snippets Groups Projects
Commit f372c5c1 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Rename algebra/fin_maps.v -> algebra/gmap.v

Also remove some superfluous map_ prefixes.
parent 9fd42107
No related branches found
No related tags found
No related merge requests found
......@@ -41,7 +41,7 @@ algebra/cmra_big_op.v
algebra/cmra_tactics.v
algebra/sts.v
algebra/auth.v
algebra/fin_maps.v
algebra/gmap.v
algebra/cofe.v
algebra/base.v
algebra/dra.v
......
......@@ -6,14 +6,14 @@ Section cofe.
Context `{Countable K} {A : cofeT}.
Implicit Types m : gmap K A.
Instance map_dist : Dist (gmap K A) := λ n m1 m2,
Instance gmap_dist : Dist (gmap K A) := λ n m1 m2,
i, m1 !! i {n} m2 !! i.
Program Definition map_chain (c : chain (gmap K A))
Program Definition gmap_chain (c : chain (gmap K A))
(k : K) : chain (option A) := {| chain_car n := c n !! k |}.
Next Obligation. by intros c k n i ?; apply (chain_cauchy c). Qed.
Instance map_compl : Compl (gmap K A) := λ c,
map_imap (λ i _, compl (map_chain c i)) (c 0).
Definition map_cofe_mixin : CofeMixin (gmap K A).
Instance gmap_compl : Compl (gmap K A) := λ c,
map_imap (λ i _, compl (gmap_chain c i)) (c 0).
Definition gmap_cofe_mixin : CofeMixin (gmap K A).
Proof.
split.
- intros m1 m2; split.
......@@ -24,15 +24,15 @@ Proof.
+ by intros m1 m2 ? k.
+ by intros m1 m2 m3 ?? k; trans (m2 !! k).
- by intros n m1 m2 ? k; apply dist_S.
- intros n c k; rewrite /compl /map_compl lookup_imap.
- intros n c k; rewrite /compl /gmap_compl lookup_imap.
feed inversion (λ H, chain_cauchy c 0 n H k); simpl; auto with lia.
by rewrite conv_compl /=; apply reflexive_eq.
Qed.
Canonical Structure mapC : cofeT := CofeT map_cofe_mixin.
Global Instance map_discrete : Discrete A Discrete mapC.
Canonical Structure gmapC : cofeT := CofeT gmap_cofe_mixin.
Global Instance gmap_discrete : Discrete A Discrete gmapC.
Proof. intros ? m m' ? i. by apply (timeless _). Qed.
(* why doesn't this go automatic? *)
Global Instance mapC_leibniz: LeibnizEquiv A LeibnizEquiv mapC.
Global Instance gmapC_leibniz: LeibnizEquiv A LeibnizEquiv gmapC.
Proof. intros; change (LeibnizEquiv (gmap K A)); apply _. Qed.
Global Instance lookup_ne n k :
......@@ -62,47 +62,47 @@ Proof.
[by constructor|by apply lookup_ne].
Qed.
Instance map_empty_timeless : Timeless ( : gmap K A).
Instance gmap_empty_timeless : Timeless ( : gmap K A).
Proof.
intros m Hm i; specialize (Hm i); rewrite lookup_empty in Hm |- *.
inversion_clear Hm; constructor.
Qed.
Global Instance map_lookup_timeless m i : Timeless m Timeless (m !! i).
Global Instance gmap_lookup_timeless m i : Timeless m Timeless (m !! i).
Proof.
intros ? [x|] Hx; [|by symmetry; apply: timeless].
assert (m {0} <[i:=x]> m)
by (by symmetry in Hx; inversion Hx; cofe_subst; rewrite insert_id).
by rewrite (timeless m (<[i:=x]>m)) // lookup_insert.
Qed.
Global Instance map_insert_timeless m i x :
Global Instance gmap_insert_timeless m i x :
Timeless x Timeless m Timeless (<[i:=x]>m).
Proof.
intros ?? m' Hm j; destruct (decide (i = j)); simplify_map_eq.
{ by apply: timeless; rewrite -Hm lookup_insert. }
by apply: timeless; rewrite -Hm lookup_insert_ne.
Qed.
Global Instance map_singleton_timeless i x :
Global Instance gmap_singleton_timeless i x :
Timeless x Timeless ({[ i := x ]} : gmap K A) := _.
End cofe.
Arguments mapC _ {_ _} _.
Arguments gmapC _ {_ _} _.
(* CMRA *)
Section cmra.
Context `{Countable K} {A : cmraT}.
Implicit Types m : gmap K A.
Instance map_op : Op (gmap K A) := merge op.
Instance map_core : Core (gmap K A) := fmap core.
Instance map_valid : Valid (gmap K A) := λ m, i, (m !! i).
Instance map_validN : ValidN (gmap K A) := λ n m, i, {n} (m !! i).
Instance gmap_op : Op (gmap K A) := merge op.
Instance gmap_core : Core (gmap K A) := fmap core.
Instance gmap_valid : Valid (gmap K A) := λ m, i, (m !! i).
Instance gmap_validN : ValidN (gmap K A) := λ n m, i, {n} (m !! i).
Lemma lookup_op m1 m2 i : (m1 m2) !! i = m1 !! i m2 !! i.
Proof. by apply lookup_merge. Qed.
Lemma lookup_core m i : core m !! i = core (m !! i).
Proof. by apply lookup_fmap. Qed.
Lemma map_included_spec (m1 m2 : gmap K A) : m1 m2 i, m1 !! i m2 !! i.
Lemma gmap_included_spec (m1 m2 : gmap K A) : m1 m2 i, m1 !! i m2 !! i.
Proof.
split; [by intros [m Hm] i; exists (m !! i); rewrite -lookup_op Hm|].
revert m2. induction m1 as [|i x m Hi IH] using map_ind=> m2 Hm.
......@@ -118,7 +118,7 @@ Proof.
lookup_insert_ne // lookup_partial_alter_ne.
Qed.
Definition map_cmra_mixin : CMRAMixin (gmap K A).
Definition gmap_cmra_mixin : CMRAMixin (gmap K A).
Proof.
split.
- by intros n m1 m2 m3 Hm i; rewrite !lookup_op (Hm i).
......@@ -132,7 +132,7 @@ Proof.
- by intros m1 m2 i; rewrite !lookup_op comm.
- by intros m i; rewrite lookup_op !lookup_core cmra_core_l.
- by intros m i; rewrite !lookup_core cmra_core_idemp.
- intros x y; rewrite !map_included_spec; intros Hm i.
- intros x y; rewrite !gmap_included_spec; intros Hm i.
by rewrite !lookup_core; apply cmra_core_preserving.
- intros n m1 m2 Hm i; apply cmra_validN_op_l with (m2 !! i).
by rewrite -lookup_op.
......@@ -152,25 +152,25 @@ Proof.
pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
by symmetry; apply option_op_positive_dist_r with (m1 !! i).
Qed.
Canonical Structure mapR : cmraT := CMRAT map_cofe_mixin map_cmra_mixin.
Global Instance map_cmra_unit : CMRAUnit mapR.
Canonical Structure gmapR : cmraT := CMRAT gmap_cofe_mixin gmap_cmra_mixin.
Global Instance gmap_cmra_unit : CMRAUnit gmapR.
Proof.
split.
- by intros i; rewrite lookup_empty.
- by intros m i; rewrite /= lookup_op lookup_empty (left_id_L None _).
- apply map_empty_timeless.
- apply gmap_empty_timeless.
Qed.
Global Instance map_cmra_discrete : CMRADiscrete A CMRADiscrete mapR.
Global Instance gmap_cmra_discrete : CMRADiscrete A CMRADiscrete gmapR.
Proof. split; [apply _|]. intros m ? i. by apply: cmra_discrete_valid. Qed.
(** Internalized properties *)
Lemma map_equivI {M} m1 m2 : (m1 m2) ⊣⊢ ( i, m1 !! i m2 !! i : uPred M).
Lemma gmap_equivI {M} m1 m2 : (m1 m2) ⊣⊢ ( i, m1 !! i m2 !! i : uPred M).
Proof. by uPred.unseal. Qed.
Lemma map_validI {M} m : ( m) ⊣⊢ ( i, (m !! i) : uPred M).
Lemma gmap_validI {M} m : ( m) ⊣⊢ ( i, (m !! i) : uPred M).
Proof. by uPred.unseal. Qed.
End cmra.
Arguments mapR _ {_ _} _.
Arguments gmapR _ {_ _} _.
Section properties.
Context `{Countable K} {A : cmraT}.
......@@ -178,23 +178,23 @@ Implicit Types m : gmap K A.
Implicit Types i : K.
Implicit Types a : A.
Lemma map_lookup_validN n m i x : {n} m m !! i {n} Some x {n} x.
Lemma lookup_validN n m i x : {n} m m !! i {n} Some x {n} x.
Proof. by move=> /(_ i) Hm Hi; move:Hm; rewrite Hi. Qed.
Lemma map_lookup_valid m i x : m m !! i Some x x.
Lemma lookup_valid m i x : m m !! i Some x x.
Proof. move=> Hm Hi. move:(Hm i). by rewrite Hi. Qed.
Lemma map_insert_validN n m i x : {n} x {n} m {n} <[i:=x]>m.
Lemma insert_validN n m i x : {n} x {n} m {n} <[i:=x]>m.
Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_eq. Qed.
Lemma map_insert_valid m i x : x m <[i:=x]>m.
Lemma insert_valid m i x : x m <[i:=x]>m.
Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_eq. Qed.
Lemma map_singleton_validN n i x : {n} ({[ i := x ]} : gmap K A) {n} x.
Lemma singleton_validN n i x : {n} ({[ i := x ]} : gmap K A) {n} x.
Proof.
split; [|by intros; apply map_insert_validN, cmra_unit_validN].
split; [|by intros; apply insert_validN, cmra_unit_validN].
by move=>/(_ i); simplify_map_eq.
Qed.
Lemma map_singleton_valid i x : ({[ i := x ]} : gmap K A) x.
Proof. rewrite !cmra_valid_validN. by setoid_rewrite map_singleton_validN. Qed.
Lemma singleton_valid i x : ({[ i := x ]} : gmap K A) x.
Proof. rewrite !cmra_valid_validN. by setoid_rewrite singleton_validN. Qed.
Lemma map_insert_singleton_opN n m i x :
Lemma insert_singleton_opN n m i x :
m !! i = None m !! i {n} Some (core x) <[i:=x]> m {n} {[ i := x ]} m.
Proof.
intros Hi j; destruct (decide (i = j)) as [->|];
......@@ -202,24 +202,22 @@ Proof.
rewrite lookup_op lookup_insert lookup_singleton.
by destruct Hi as [->| ->]; constructor; rewrite ?cmra_core_r.
Qed.
Lemma map_insert_singleton_op m i x :
Lemma insert_singleton_op m i x :
m !! i = None m !! i Some (core x) <[i:=x]> m {[ i := x ]} m.
Proof.
rewrite !equiv_dist; naive_solver eauto using map_insert_singleton_opN.
Qed.
Proof. rewrite !equiv_dist; naive_solver eauto using insert_singleton_opN. Qed.
Lemma map_core_singleton (i : K) (x : A) :
Lemma core_singleton (i : K) (x : A) :
core ({[ i := x ]} : gmap K A) = {[ i := core x ]}.
Proof. apply map_fmap_singleton. Qed.
Lemma map_op_singleton (i : K) (x y : A) :
Lemma op_singleton (i : K) (x y : A) :
{[ i := x ]} {[ i := y ]} = ({[ i := x y ]} : gmap K A).
Proof. by apply (merge_singleton _ _ _ x y). Qed.
Global Instance map_persistent m : ( x : A, Persistent x) Persistent m.
Global Instance gmap_persistent m : ( x : A, Persistent x) Persistent m.
Proof. intros ? i. by rewrite lookup_core persistent. Qed.
Global Instance map_singleton_persistent i (x : A) :
Global Instance gmap_singleton_persistent i (x : A) :
Persistent x Persistent {[ i := x ]}.
Proof. intros. by rewrite /Persistent map_core_singleton persistent. Qed.
Proof. intros. by rewrite /Persistent core_singleton persistent. Qed.
Lemma singleton_includedN n m i x :
{[ i := x ]} {n} m y, m !! i {n} Some y x {n} y.
......@@ -234,14 +232,14 @@ Proof.
+ rewrite Hi lookup_op lookup_singleton lookup_insert. by constructor.
+ by rewrite lookup_op lookup_singleton_ne // lookup_insert_ne // left_id.
Qed.
Lemma map_dom_op m1 m2 : dom (gset K) (m1 m2) dom _ m1 dom _ m2.
Lemma dom_op m1 m2 : dom (gset K) (m1 m2) dom _ m1 dom _ m2.
Proof.
apply elem_of_equiv; intros i; rewrite elem_of_union !elem_of_dom.
unfold is_Some; setoid_rewrite lookup_op.
destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_insert_updateP (P : A Prop) (Q : gmap K A Prop) m i x :
Lemma insert_updateP (P : A Prop) (Q : gmap K A Prop) m i x :
x ~~>: P ( y, P y Q (<[i:=y]>m)) <[i:=x]>m ~~>: Q.
Proof.
intros Hx%option_updateP' HP n mf Hm.
......@@ -251,24 +249,22 @@ Proof.
intros j; move: (Hm j)=>{Hm}; rewrite !lookup_op=>Hm.
destruct (decide (i = j)); simplify_map_eq/=; auto.
Qed.
Lemma map_insert_updateP' (P : A Prop) m i x :
Lemma insert_updateP' (P : A Prop) m i x :
x ~~>: P <[i:=x]>m ~~>: λ m', y, m' = <[i:=y]>m P y.
Proof. eauto using map_insert_updateP. Qed.
Lemma map_insert_update m i x y : x ~~> y <[i:=x]>m ~~> <[i:=y]>m.
Proof.
rewrite !cmra_update_updateP; eauto using map_insert_updateP with subst.
Qed.
Proof. eauto using insert_updateP. Qed.
Lemma insert_update m i x y : x ~~> y <[i:=x]>m ~~> <[i:=y]>m.
Proof. rewrite !cmra_update_updateP; eauto using insert_updateP with subst. Qed.
Lemma map_singleton_updateP (P : A Prop) (Q : gmap K A Prop) i x :
Lemma singleton_updateP (P : A Prop) (Q : gmap K A Prop) i x :
x ~~>: P ( y, P y Q {[ i := y ]}) {[ i := x ]} ~~>: Q.
Proof. apply map_insert_updateP. Qed.
Lemma map_singleton_updateP' (P : A Prop) i x :
Proof. apply insert_updateP. Qed.
Lemma singleton_updateP' (P : A Prop) i x :
x ~~>: P {[ i := x ]} ~~>: λ m, y, m = {[ i := y ]} P y.
Proof. apply map_insert_updateP'. Qed.
Lemma map_singleton_update i (x y : A) : x ~~> y {[ i := x ]} ~~> {[ i := y ]}.
Proof. apply map_insert_update. Qed.
Proof. apply insert_updateP'. Qed.
Lemma singleton_update i (x y : A) : x ~~> y {[ i := x ]} ~~> {[ i := y ]}.
Proof. apply insert_update. Qed.
Lemma map_singleton_updateP_empty `{Empty A, !CMRAUnit A}
Lemma singleton_updateP_empty `{Empty A, !CMRAUnit A}
(P : A Prop) (Q : gmap K A Prop) i :
~~>: P ( y, P y Q {[ i := y ]}) ~~>: Q.
Proof.
......@@ -283,34 +279,34 @@ Proof.
by rewrite right_id.
- move:(Hg i'). by rewrite !lookup_op lookup_singleton_ne // !left_id.
Qed.
Lemma map_singleton_updateP_empty' `{Empty A, !CMRAUnit A} (P: A Prop) i :
Lemma singleton_updateP_empty' `{Empty A, !CMRAUnit A} (P: A Prop) i :
~~>: P ~~>: λ m, y, m = {[ i := y ]} P y.
Proof. eauto using map_singleton_updateP_empty. Qed.
Proof. eauto using singleton_updateP_empty. Qed.
Section freshness.
Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
Lemma map_updateP_alloc_strong (Q : gmap K A Prop) (I : gset K) m x :
Lemma updateP_alloc_strong (Q : gmap K A Prop) (I : gset K) m x :
x ( i, m !! i = None i I Q (<[i:=x]>m)) m ~~>: Q.
Proof.
intros ? HQ n mf Hm. set (i := fresh (I dom (gset K) (m mf))).
assert (i I i dom (gset K) m i dom (gset K) mf) as [?[??]].
{ rewrite -not_elem_of_union -map_dom_op -not_elem_of_union; apply is_fresh. }
{ rewrite -not_elem_of_union -dom_op -not_elem_of_union; apply is_fresh. }
exists (<[i:=x]>m); split.
{ by apply HQ; last done; apply not_elem_of_dom. }
rewrite map_insert_singleton_opN; last by left; apply not_elem_of_dom.
rewrite -assoc -map_insert_singleton_opN;
last by left; apply not_elem_of_dom; rewrite map_dom_op not_elem_of_union.
by apply map_insert_validN; [apply cmra_valid_validN|].
rewrite insert_singleton_opN; last by left; apply not_elem_of_dom.
rewrite -assoc -insert_singleton_opN;
last by left; apply not_elem_of_dom; rewrite dom_op not_elem_of_union.
by apply insert_validN; [apply cmra_valid_validN|].
Qed.
Lemma map_updateP_alloc (Q : gmap K A Prop) m x :
Lemma updateP_alloc (Q : gmap K A Prop) m x :
x ( i, m !! i = None Q (<[i:=x]>m)) m ~~>: Q.
Proof. move=>??. eapply map_updateP_alloc_strong with (I:=); by eauto. Qed.
Lemma map_updateP_alloc_strong' m x (I : gset K) :
Proof. move=>??. eapply updateP_alloc_strong with (I:=); by eauto. Qed.
Lemma updateP_alloc_strong' m x (I : gset K) :
x m ~~>: λ m', i, i I m' = <[i:=x]>m m !! i = None.
Proof. eauto using map_updateP_alloc_strong. Qed.
Lemma map_updateP_alloc' m x :
Proof. eauto using updateP_alloc_strong. Qed.
Lemma updateP_alloc' m x :
x m ~~>: λ m', i, m' = <[i:=x]>m m !! i = None.
Proof. eauto using map_updateP_alloc. Qed.
Proof. eauto using updateP_alloc. Qed.
End freshness.
(* Allocation is a local update: Just use composition with a singleton map. *)
......@@ -319,7 +315,7 @@ End freshness.
deallocation. *)
(* Applying a local update at a position we own is a local update. *)
Global Instance map_alter_update `{!LocalUpdate Lv L} i :
Global Instance gmap_alter_update `{!LocalUpdate Lv L} i :
LocalUpdate (λ m, x, m !! i = Some x Lv x) (alter L i).
Proof.
split; first apply _.
......@@ -332,32 +328,32 @@ Qed.
End properties.
(** Functor *)
Instance map_fmap_ne `{Countable K} {A B : cofeT} (f : A B) n :
Instance gmap_fmap_ne `{Countable K} {A B : cofeT} (f : A B) n :
Proper (dist n ==> dist n) f Proper (dist n ==>dist n) (fmap (M:=gmap K) f).
Proof. by intros ? m m' Hm k; rewrite !lookup_fmap; apply option_fmap_ne. Qed.
Instance map_fmap_cmra_monotone `{Countable K} {A B : cmraT} (f : A B)
Instance gmap_fmap_cmra_monotone `{Countable K} {A B : cmraT} (f : A B)
`{!CMRAMonotone f} : CMRAMonotone (fmap f : gmap K A gmap K B).
Proof.
split; try apply _.
- by intros n m ? i; rewrite lookup_fmap; apply (validN_preserving _).
- intros m1 m2; rewrite !map_included_spec=> Hm i.
- intros m1 m2; rewrite !gmap_included_spec=> Hm i.
by rewrite !lookup_fmap; apply: included_preserving.
Qed.
Definition mapC_map `{Countable K} {A B} (f: A -n> B) : mapC K A -n> mapC K B :=
CofeMor (fmap f : mapC K A mapC K B).
Instance mapC_map_ne `{Countable K} {A B} n :
Proper (dist n ==> dist n) (@mapC_map K _ _ A B).
Definition gmapC_map `{Countable K} {A B} (f: A -n> B) :
gmapC K A -n> gmapC K B := CofeMor (fmap f : gmapC K A gmapC K B).
Instance gmapC_map_ne `{Countable K} {A B} n :
Proper (dist n ==> dist n) (@gmapC_map K _ _ A B).
Proof.
intros f g Hf m k; rewrite /= !lookup_fmap.
destruct (_ !! k) eqn:?; simpl; constructor; apply Hf.
Qed.
Program Definition mapCF K `{Countable K} (F : cFunctor) : cFunctor := {|
cFunctor_car A B := mapC K (cFunctor_car F A B);
cFunctor_map A1 A2 B1 B2 fg := mapC_map (cFunctor_map F fg)
Program Definition gmapCF K `{Countable K} (F : cFunctor) : cFunctor := {|
cFunctor_car A B := gmapC K (cFunctor_car F A B);
cFunctor_map A1 A2 B1 B2 fg := gmapC_map (cFunctor_map F fg)
|}.
Next Obligation.
by intros K ?? F A1 A2 B1 B2 n f g Hfg; apply mapC_map_ne, cFunctor_ne.
by intros K ?? F A1 A2 B1 B2 n f g Hfg; apply gmapC_map_ne, cFunctor_ne.
Qed.
Next Obligation.
intros K ?? F A B x. rewrite /= -{2}(map_fmap_id x).
......@@ -367,18 +363,18 @@ Next Obligation.
intros K ?? F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -map_fmap_compose.
apply map_fmap_setoid_ext=>y ??; apply cFunctor_compose.
Qed.
Instance mapCF_contractive K `{Countable K} F :
cFunctorContractive F cFunctorContractive (mapCF K F).
Instance gmapCF_contractive K `{Countable K} F :
cFunctorContractive F cFunctorContractive (gmapCF K F).
Proof.
by intros ? A1 A2 B1 B2 n f g Hfg; apply mapC_map_ne, cFunctor_contractive.
by intros ? A1 A2 B1 B2 n f g Hfg; apply gmapC_map_ne, cFunctor_contractive.
Qed.
Program Definition mapRF K `{Countable K} (F : rFunctor) : rFunctor := {|
rFunctor_car A B := mapR K (rFunctor_car F A B);
rFunctor_map A1 A2 B1 B2 fg := mapC_map (rFunctor_map F fg)
Program Definition gmapRF K `{Countable K} (F : rFunctor) : rFunctor := {|
rFunctor_car A B := gmapR K (rFunctor_car F A B);
rFunctor_map A1 A2 B1 B2 fg := gmapC_map (rFunctor_map F fg)
|}.
Next Obligation.
by intros K ?? F A1 A2 B1 B2 n f g Hfg; apply mapC_map_ne, rFunctor_ne.
by intros K ?? F A1 A2 B1 B2 n f g Hfg; apply gmapC_map_ne, rFunctor_ne.
Qed.
Next Obligation.
intros K ?? F A B x. rewrite /= -{2}(map_fmap_id x).
......@@ -388,8 +384,8 @@ Next Obligation.
intros K ?? F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -map_fmap_compose.
apply map_fmap_setoid_ext=>y ??; apply rFunctor_compose.
Qed.
Instance mapRF_contractive K `{Countable K} F :
rFunctorContractive F rFunctorContractive (mapRF K F).
Instance gmapRF_contractive K `{Countable K} F :
rFunctorContractive F rFunctorContractive (gmapRF K F).
Proof.
by intros ? A1 A2 B1 B2 n f g Hfg; apply mapC_map_ne, rFunctor_contractive.
by intros ? A1 A2 B1 B2 n f g Hfg; apply gmapC_map_ne, rFunctor_contractive.
Qed.
......@@ -7,7 +7,7 @@ Import uPred.
a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
predicates over finmaps instead of just ownP. *)
Definition heapR : cmraT := mapR loc (fracR (dec_agreeR val)).
Definition heapR : cmraT := gmapR loc (fracR (dec_agreeR val)).
(** The CMRA we need. *)
Class heapG Σ := HeapG {
......@@ -108,9 +108,9 @@ Section heap.
induction σ as [|l v σ Hl IH] using map_ind.
{ rewrite big_sepM_empty; apply True_intro. }
rewrite to_heap_insert big_sepM_insert //.
rewrite (map_insert_singleton_op (to_heap σ));
rewrite (insert_singleton_op (to_heap σ));
last by rewrite lookup_fmap Hl; auto.
by rewrite auth_own_op IH.
by rewrite auth_own_op IH.
Qed.
Context `{heapG Σ}.
......@@ -121,16 +121,16 @@ Section heap.
Lemma heap_mapsto_op_eq l q1 q2 v :
(l {q1} v l {q2} v) ⊣⊢ (l {q1+q2} v).
Proof. by rewrite -auth_own_op map_op_singleton Frac_op dec_agree_idemp. Qed.
Proof. by rewrite -auth_own_op op_singleton Frac_op dec_agree_idemp. Qed.
Lemma heap_mapsto_op l q1 q2 v1 v2 :
(l {q1} v1 l {q2} v2) ⊣⊢ (v1 = v2 l {q1+q2} v1).
Proof.
destruct (decide (v1 = v2)) as [->|].
{ by rewrite heap_mapsto_op_eq const_equiv // left_id. }
rewrite -auth_own_op map_op_singleton Frac_op dec_agree_ne //.
rewrite -auth_own_op op_singleton Frac_op dec_agree_ne //.
apply (anti_symm ()); last by apply const_elim_l.
rewrite auth_own_valid map_validI (forall_elim l) lookup_singleton.
rewrite auth_own_valid gmap_validI (forall_elim l) lookup_singleton.
rewrite option_validI frac_validI discrete_valid. by apply const_elim_r.
Qed.
......@@ -160,8 +160,8 @@ Section heap.
repeat erewrite <-exist_intro by apply _; simpl.
rewrite -of_heap_insert left_id right_id.
rewrite /heap_mapsto. ecancel [_ -★ Φ _]%I.
rewrite -(map_insert_singleton_op h); last by apply of_heap_None.
rewrite const_equiv; last by apply (map_insert_valid h).
rewrite -(insert_singleton_op h); last by apply of_heap_None.
rewrite const_equiv; last by apply (insert_valid h).
by rewrite left_id -later_intro.
Qed.
......
......@@ -12,7 +12,7 @@ Typeclasses Opaque to_globalF own.
(** Properties about ghost ownership *)
Section global.
Context `{i : inG Λ Σ A}.
Context `{inG Λ Σ A}.
Implicit Types a : A.
(** * Transport empty *)
......@@ -35,12 +35,12 @@ Global Instance own_proper γ : Proper ((≡) ==> (⊣⊢)) (own γ) := ne_prope
Lemma own_op γ a1 a2 : own γ (a1 a2) ⊣⊢ (own γ a1 own γ a2).
Proof. by rewrite /own -ownG_op to_globalF_op. Qed.
Global Instance own_mono γ : Proper (flip () ==> ()) (own γ).
Proof. move=>a b [c H]. rewrite H own_op. eauto with I. Qed.
Proof. move=>a b [c ->]. rewrite own_op. eauto with I. Qed.
Lemma own_valid γ a : own γ a a.
Proof.
rewrite /own ownG_valid /to_globalF.
rewrite iprod_validI (forall_elim inG_id) iprod_lookup_singleton.
rewrite map_validI (forall_elim γ) lookup_singleton option_validI.
rewrite gmap_validI (forall_elim γ) lookup_singleton option_validI.
(* implicit arguments differ a bit *)
by trans ( cmra_transport inG_prf a : iPropG Λ Σ)%I; last destruct inG_prf.
Qed.
......@@ -60,8 +60,9 @@ Lemma own_alloc_strong a E (G : gset gname) :
Proof.
intros Ha.
rewrite -(pvs_mono _ _ ( m, ( γ, γ G m = to_globalF γ a) ownG m)%I).
- rewrite ownG_empty. eapply pvs_ownG_updateP, (iprod_singleton_updateP_empty inG_id);
first (eapply map_updateP_alloc_strong', cmra_transport_valid, Ha);
- rewrite ownG_empty.
eapply pvs_ownG_updateP, (iprod_singleton_updateP_empty inG_id);
first (eapply updateP_alloc_strong', cmra_transport_valid, Ha);
naive_solver.
- apply exist_elim=>m; apply const_elim_l=>-[γ [Hfresh ->]].
by rewrite -(exist_intro γ) const_equiv // left_id.
......@@ -78,7 +79,7 @@ Proof.
intros Ha.
rewrite -(pvs_mono _ _ ( m, ( a', m = to_globalF γ a' P a') ownG m)%I).
- eapply pvs_ownG_updateP, iprod_singleton_updateP;
first by (eapply map_singleton_updateP', cmra_transport_updateP', Ha).
first by (eapply singleton_updateP', cmra_transport_updateP', Ha).
naive_solver.
- apply exist_elim=>m; apply const_elim_l=>-[a' [-> HP]].
rewrite -(exist_intro a'). by apply and_intro; [apply const_intro|].
......@@ -90,13 +91,12 @@ Proof.
by apply pvs_mono, exist_elim=> a''; apply const_elim_l=> ->.
Qed.
Lemma own_empty `{Empty A, !CMRAUnit A} γ E :
True (|={E}=> own γ ).
Lemma own_empty `{Empty A, !CMRAUnit A} γ E : True (|={E}=> own γ ).
Proof.
rewrite ownG_empty /own. apply pvs_ownG_update, cmra_update_updateP.
eapply iprod_singleton_updateP_empty;
first by eapply map_singleton_updateP_empty', cmra_transport_updateP',
cmra_update_updateP, cmra_update_unit.
first by eapply singleton_updateP_empty', cmra_transport_updateP',
cmra_update_updateP, cmra_update_unit.
naive_solver.
Qed.
End global.
......@@ -18,7 +18,7 @@ Definition gid (Σ : gFunctors) := fin (projT1 Σ).
Definition gname := positive.
Definition globalF (Σ : gFunctors) : iFunctor :=
IFunctor (iprodRF (λ i, mapRF gname (projT2 Σ i))).
IFunctor (iprodRF (λ i, gmapRF gname (projT2 Σ i))).
Notation iPropG Λ Σ := (iProp Λ (globalF Σ)).
Class inG (Λ : language) (Σ : gFunctors) (A : cmraT) := InG {
......@@ -39,7 +39,7 @@ Proof. by intros a a' Ha; apply iprod_singleton_ne; rewrite Ha. Qed.
Lemma to_globalF_op γ a1 a2 :
to_globalF γ (a1 a2) to_globalF γ a1 to_globalF γ a2.
Proof.
by rewrite /to_globalF iprod_op_singleton map_op_singleton cmra_transport_op.
by rewrite /to_globalF iprod_op_singleton op_singleton cmra_transport_op.
Qed.
Global Instance to_globalF_timeless γ m: Timeless m Timeless (to_globalF γ m).
Proof. rewrite /to_globalF; apply _. Qed.
......
......@@ -65,7 +65,7 @@ Proof.
rewrite /uPred_holds/=res_includedN/= singleton_includedN; split.
- intros [(P'&Hi&HP) _]; rewrite Hi.
apply Some_dist, symmetry, agree_valid_includedN; last done.
by apply map_lookup_validN with (wld r) i.
by apply lookup_validN with (wld r) i.
- intros ?; split_and?; try apply cmra_unit_leastN; eauto.
Qed.
Lemma ownP_spec n r σ : {n} r (ownP σ) n r pst r Excl σ.
......
From iris.algebra Require Export fin_maps agree excl.
From iris.algebra Require Export gmap agree excl.
From iris.algebra Require Import upred.
From iris.program_logic Require Export language.
Record res (Λ : language) (A : cofeT) (M : cmraT) := Res {
wld : mapR positive (agreeR A);
wld : gmapR positive (agreeR A);
pst : exclR (stateC Λ);
gst : M;
}.
......@@ -216,7 +216,7 @@ Instance resC_map_ne {Λ A A' M M'} n :
Proper (dist n ==> dist n ==> dist n) (@resC_map Λ A A' M M').
Proof.
intros f g Hfg r; split; simpl; auto.
- by apply (mapC_map_ne _ (agreeC_map f) (agreeC_map g)), agreeC_map_ne.
- by apply (gmapC_map_ne _ (agreeC_map f) (agreeC_map g)), agreeC_map_ne.
Qed.
Program Definition resRF (Λ : language)
......
......@@ -53,7 +53,7 @@ Proof.
assert (P' {S n} to_agree $ Next $ iProp_unfold $
iProp_fold $ later_car $ P' (S n)) as HPiso.
{ rewrite iProp_unfold_fold later_eta to_agree_car //.
apply (map_lookup_validN _ (wld (r big_opM rs)) i); rewrite ?HP'; auto. }
apply (lookup_validN _ (wld (r big_opM rs)) i); rewrite ?HP'; auto. }
assert (P {n'} iProp_fold (later_car (P' (S n)))) as HPP'.
{ apply (inj iProp_unfold), (inj Next), (inj to_agree).
by rewrite -HiP -(dist_le _ _ _ _ HPiso). }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment