Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
0e2ea309
Commit
0e2ea309
authored
2 years ago
by
Simcha van Collem
Browse files
Options
Downloads
Patches
Plain Diff
Add transitive closure for bi
parent
d228b632
No related branches found
No related tags found
No related merge requests found
Pipeline
#74141
canceled
2 years ago
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/bi/lib/relations.v
+84
-0
84 additions, 0 deletions
iris/bi/lib/relations.v
with
84 additions
and
0 deletions
iris/bi/lib/relations.v
+
84
−
0
View file @
0e2ea309
...
...
@@ -23,6 +23,16 @@ Section definitions.
Global
Instance
:
Params
(
@
bi_rtc
)
4
:=
{}
.
Typeclasses
Opaque
bi_rtc
.
Definition
bi_tc_pre
(
R
:
A
→
A
→
PROP
)
(
x2
:
A
)
(
rec
:
A
→
PROP
)
(
x1
:
A
)
:
PROP
:=
R
x1
x2
∨
∃
x'
,
R
x1
x'
∗
rec
x'
.
Definition
bi_tc
(
R
:
A
→
A
→
PROP
)
(
x1
x2
:
A
)
:
PROP
:=
bi_least_fixpoint
(
bi_tc_pre
R
x2
)
x1
.
Global
Instance
:
Params
(
@
bi_tc
)
4
:=
{}
.
Typeclasses
Opaque
bi_tc
.
End
definitions
.
Global
Instance
bi_rtc_pre_mono
{
PROP
:
bi
}
`{
!
BiInternalEq
PROP
}
...
...
@@ -48,6 +58,31 @@ Global Instance bi_rtc_proper {PROP : bi} `{!BiInternalEq PROP} {A : ofe} (R : A
:
Proper
((
≡
)
==>
(
≡
)
==>
(
⊣⊢
))
(
bi_rtc
R
)
.
Proof
.
apply
ne_proper_2
.
apply
_
.
Qed
.
Global
Instance
bi_tc_pre_mono
`{
!
BiInternalEq
PROP
}
{
A
:
ofe
}
(
R
:
A
→
A
→
PROP
)
`{
NonExpansive2
R
}
(
x
:
A
)
:
BiMonoPred
(
bi_tc_pre
R
x
)
.
Proof
.
constructor
;
[|
solve_proper
]
.
iIntros
(
rec1
rec2
??)
"#H"
.
iIntros
(
x1
)
"Hrec"
.
iDestruct
"Hrec"
as
"[Hrec | Hrec]"
.
{
by
iLeft
.
}
iDestruct
"Hrec"
as
(
x'
)
"[HR Hrec]"
.
iRight
.
iExists
x'
.
iFrame
"HR"
.
by
iApply
"H"
.
Qed
.
Global
Instance
bi_tc_ne
`{
!
BiInternalEq
PROP
}
{
A
:
ofe
}
(
R
:
A
→
A
→
PROP
)
`{
NonExpansive2
R
}
:
NonExpansive2
(
bi_tc
R
)
.
Proof
.
intros
n
x1
x2
Hx
y1
y2
Hy
.
rewrite
/
bi_tc
Hx
.
f_equiv
=>
rec
z
.
solve_proper
.
Qed
.
Global
Instance
bi_tc_proper
`{
!
BiInternalEq
PROP
}
{
A
:
ofe
}
(
R
:
A
→
A
→
PROP
)
`{
NonExpansive2
R
}
:
Proper
((
≡
)
==>
(
≡
)
==>
(
⊣⊢
))
(
bi_tc
R
)
.
Proof
.
apply
ne_proper_2
.
apply
_
.
Qed
.
(** * General theorems *)
Section
general
.
Context
{
PROP
:
bi
}
`{
!
BiInternalEq
PROP
}
.
...
...
@@ -102,4 +137,53 @@ Section general.
by
iApply
"IH"
.
Qed
.
(** ** Results about the transitive closure [bi_tc] *)
Lemma
bi_tc_unfold
(
x1
x2
:
A
)
:
bi_tc
R
x1
x2
≡
bi_tc_pre
R
x2
(
λ
x1
,
bi_tc
R
x1
x2
)
x1
.
Proof
.
by
rewrite
/
bi_tc
;
rewrite
-
least_fixpoint_unfold
.
Qed
.
Lemma
bi_tc_strong_ind_l
x2
Φ
:
NonExpansive
Φ
→
□
(
∀
x1
,
(
R
x1
x2
∨
(
∃
x'
,
R
x1
x'
∗
(
Φ
x'
∧
bi_tc
R
x'
x2
)))
-∗
Φ
x1
)
-∗
∀
x1
,
bi_tc
R
x1
x2
-∗
Φ
x1
.
Proof
.
iIntros
(?)
"#IH"
.
rewrite
/
bi_tc
.
iApply
(
least_fixpoint_ind
(
bi_tc_pre
R
x2
)
with
"IH"
)
.
Qed
.
Lemma
bi_tc_ind_l
x2
Φ
:
NonExpansive
Φ
→
□
(
∀
x1
,
(
R
x1
x2
∨
(
∃
x'
,
R
x1
x'
∗
Φ
x'
))
-∗
Φ
x1
)
-∗
∀
x1
,
bi_tc
R
x1
x2
-∗
Φ
x1
.
Proof
.
iIntros
(?)
"#IH"
.
rewrite
/
bi_tc
.
iApply
(
least_fixpoint_iter
(
bi_tc_pre
R
x2
)
with
"IH"
)
.
Qed
.
Lemma
bi_tc_l
x1
x2
x3
:
R
x1
x2
-∗
bi_tc
R
x2
x3
-∗
bi_tc
R
x1
x3
.
Proof
.
iIntros
"H1 H2"
.
iEval
(
rewrite
bi_tc_unfold
/
bi_tc_pre
)
.
iRight
.
iExists
x2
.
iFrame
.
Qed
.
Lemma
bi_tc_once
x1
x2
:
R
x1
x2
-∗
bi_tc
R
x1
x2
.
Proof
.
iIntros
"H"
.
iEval
(
rewrite
bi_tc_unfold
/
bi_tc_pre
)
.
by
iLeft
.
Qed
.
Lemma
bi_tc_trans
x1
x2
x3
:
bi_tc
R
x1
x2
-∗
bi_tc
R
x2
x3
-∗
bi_tc
R
x1
x3
.
Proof
.
iRevert
(
x1
)
.
iApply
bi_tc_ind_l
.
{
solve_proper
.
}
iIntros
"!>"
(
x1
)
"H H2"
.
iDestruct
"H"
as
"[H | H]"
.
{
iApply
(
bi_tc_l
with
"H H2"
)
.
}
iDestruct
"H"
as
(
x'
)
"[H IH]"
.
iApply
(
bi_tc_l
with
"H"
)
.
by
iApply
"IH"
.
Qed
.
End
general
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment