Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
f273db9e
Commit
f273db9e
authored
2 years ago
by
Simcha van Collem
Browse files
Options
Downloads
Patches
Plain Diff
Add persistency lemmas/instances for bi_tc, bi_rtc
parent
7d8ed8d1
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#74177
passed
2 years ago
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/bi/lib/relations.v
+24
-0
24 additions, 0 deletions
iris/bi/lib/relations.v
with
24 additions
and
0 deletions
iris/bi/lib/relations.v
+
24
−
0
View file @
f273db9e
...
...
@@ -149,6 +149,14 @@ Section general.
bi_rtc
R
x
z
-∗
<
affine
>
(
x
≡
z
)
∨
∃
y
,
R
x
y
∗
bi_rtc
R
y
z
.
Proof
.
rewrite
bi_rtc_unfold
.
iIntros
"[H | H]"
;
eauto
.
Qed
.
Global
Instance
bi_rtc_persistent_affine
:
(
∀
x
y
,
Affine
(
R
x
y
))
→
(
∀
x
y
,
Persistent
(
R
x
y
))
→
∀
x
y
,
Persistent
(
bi_rtc
R
x
y
)
.
Proof
.
intros
????
.
apply
least_fixpoint_persistent_affine
;
apply
_
.
Qed
.
(** ** Results about the transitive closure [bi_tc] *)
Lemma
bi_tc_unfold
(
x1
x2
:
A
)
:
bi_tc
R
x1
x2
≡
bi_tc_pre
R
x2
(
λ
x1
,
bi_tc
R
x1
x2
)
x1
.
...
...
@@ -237,6 +245,22 @@ Section general.
iApply
(
bi_rtc_l
with
"H H'"
)
.
Qed
.
Lemma
bi_tc_persistent_absorbing
:
(
∀
x
y
,
Absorbing
(
R
x
y
))
→
(
∀
x
y
,
Persistent
(
R
x
y
))
→
∀
x
y
,
Persistent
(
bi_tc
R
x
y
)
.
Proof
.
intros
????
.
apply
least_fixpoint_persistent_absorbing
;
apply
_
.
Qed
.
Lemma
bi_tc_persistent_affine
:
(
∀
x
y
,
Affine
(
R
x
y
))
→
(
∀
x
y
,
Persistent
(
R
x
y
))
→
∀
x
y
,
Persistent
(
bi_tc
R
x
y
)
.
Proof
.
intros
????
.
apply
least_fixpoint_persistent_affine
;
apply
_
.
Qed
.
(** ** Equivalences between closure operators *)
Lemma
bi_rtc_bi_tc
x
y
:
bi_rtc
R
x
y
⊣⊢
<
affine
>
(
x
≡
y
)
∨
bi_tc
R
x
y
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment