Skip to content
Snippets Groups Projects
Commit 812f01bf authored by Dan Frumin's avatar Dan Frumin Committed by Robbert Krebbers
Browse files

gmultiset lemmas

parent d98ab4e4
No related branches found
No related tags found
No related merge requests found
......@@ -101,6 +101,14 @@ Proof.
apply Permutation_singleton. by rewrite <-(right_id () {[x]}),
elements_union_singleton, elements_empty by set_solver.
Qed.
Lemma elements_disj_union (X Y : C) :
X ## Y elements (X Y) elements X ++ elements Y.
Proof.
intros HXY. apply NoDup_Permutation.
- apply NoDup_elements.
- apply NoDup_app. set_solver by eauto using NoDup_elements.
- set_solver.
Qed.
Lemma elements_submseteq X Y : X Y elements X ⊆+ elements Y.
Proof.
intros; apply NoDup_submseteq; eauto using NoDup_elements.
......@@ -222,6 +230,22 @@ Lemma set_fold_proper {B} (R : relation B) `{!Equivalence R}
Proper (() ==> R) (set_fold f b : C B).
Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed.
Lemma set_fold_empty {B} (f : A B B) (b : B) :
set_fold f b ( : C) = b.
Proof. by unfold set_fold; simpl; rewrite elements_empty. Qed.
Lemma set_fold_singleton {B} (f : A B B) (b : B) (a : A) :
set_fold f b ({[a]} : C) = f a b.
Proof. by unfold set_fold; simpl; rewrite elements_singleton. Qed.
Lemma set_fold_disj_union (f : A A A) (b : A) X Y :
Comm (=) f
Assoc (=) f
X ## Y
set_fold f b (X Y) = set_fold f (set_fold f b X) Y.
Proof.
intros Hcomm Hassoc Hdisj. unfold set_fold; simpl.
by rewrite elements_disj_union, <- foldr_app, (comm (++)).
Qed.
(** * Minimal elements *)
Lemma minimal_exists R `{!Transitive R, x y, Decision (R x y)} (X : C) :
X x, x X minimal R x X.
......
......@@ -330,7 +330,23 @@ Proof.
destruct (X !! x); naive_solver lia.
Qed.
(* Properties of the size operation *)
(** Properties of the set_fold operation *)
Lemma gmultiset_set_fold_empty {B} (f : A B B) (b : B) :
set_fold f b ( : gmultiset A) = b.
Proof. by unfold set_fold; simpl; rewrite gmultiset_elements_empty. Qed.
Lemma gmultiset_set_fold_singleton {B} (f : A B B) (b : B) (a : A) :
set_fold f b ({[a]} : gmultiset A) = f a b.
Proof. by unfold set_fold; simpl; rewrite gmultiset_elements_singleton. Qed.
Lemma gmultiset_set_fold_disj_union (f : A A A) (b : A) X Y :
Comm (=) f
Assoc (=) f
set_fold f b (X Y) = set_fold f (set_fold f b X) Y.
Proof.
intros Hcomm Hassoc. unfold set_fold; simpl.
by rewrite gmultiset_elements_disj_union, <- foldr_app, (comm (++)).
Qed.
(** Properties of the size operation *)
Lemma gmultiset_size_empty : size ( : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_inv X : size X = 0 X = ∅.
......@@ -370,7 +386,7 @@ Proof.
by rewrite gmultiset_elements_disj_union, app_length.
Qed.
(* Order stuff *)
(** Order stuff *)
Global Instance gmultiset_po : PartialOrder (⊆@{gmultiset A}).
Proof.
split; [split|].
......@@ -464,6 +480,13 @@ Proof.
rewrite HX at 2; rewrite gmultiset_size_disj_union. lia.
Qed.
Lemma gmultiset_empty_difference X Y : Y X Y X = ∅.
Proof.
intros HYX. unfold_leibniz. intros x.
rewrite multiplicity_difference, multiplicity_empty.
specialize (HYX x). lia.
Qed.
Lemma gmultiset_non_empty_difference X Y : X Y Y X ∅.
Proof.
intros [_ HXY2] Hdiff; destruct HXY2; intros x.
......@@ -471,13 +494,16 @@ Proof.
rewrite multiplicity_difference, multiplicity_empty; lia.
Qed.
Lemma gmultiset_difference_diag X : X X = ∅.
Proof. by apply gmultiset_empty_difference. Qed.
Lemma gmultiset_difference_subset X Y : X X Y Y X Y.
Proof.
intros. eapply strict_transitive_l; [by apply gmultiset_union_subset_r|].
by rewrite <-(gmultiset_disj_union_difference X Y).
Qed.
(* Mononicity *)
(** Mononicity *)
Lemma gmultiset_elements_submseteq X Y : X Y elements X ⊆+ elements Y.
Proof.
intros ->%gmultiset_disj_union_difference. rewrite gmultiset_elements_disj_union.
......@@ -495,7 +521,7 @@ Proof.
gmultiset_size_disj_union by auto. lia.
Qed.
(* Well-foundedness *)
(** Well-foundedness *)
Lemma gmultiset_wf : wf (⊂@{gmultiset A}).
Proof.
apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
......
......@@ -3446,6 +3446,16 @@ Lemma foldr_permutation_proper {A B} (R : relation B) `{!PreOrder R}
(Hf : a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
Proper (() ==> R) (foldr f b).
Proof. intros l1 l2 Hl. apply foldr_permutation; auto. Qed.
Instance foldr_permutation_proper' {A} (R : relation A) `{!PreOrder R}
(f : A A A) (a : A) `{!∀ a, Proper (R ==> R) (f a), !Assoc R f, !Comm R f} :
Proper (() ==> R) (foldr f a).
Proof.
apply (foldr_permutation_proper R f); [solve_proper|].
assert (Proper (R ==> R ==> R) f).
{ intros a1 a2 Ha b1 b2 Hb. by rewrite Hb, (comm f a1), Ha, (comm f). }
intros a1 a2 b.
by rewrite (assoc f), (comm f _ b), (assoc f), (comm f b), (comm f _ a2).
Qed.
(** ** Properties of the [zip_with] and [zip] functions *)
Section zip_with.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment