Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
1c1ae879
Commit
1c1ae879
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
proofmode tests: use a section
parent
1edf71ef
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/tests/proofmode.v
+28
-24
28 additions, 24 deletions
theories/tests/proofmode.v
with
28 additions
and
24 deletions
theories/tests/proofmode.v
+
28
−
24
View file @
1c1ae879
...
...
@@ -2,7 +2,9 @@ From iris.proofmode Require Import tactics.
From
iris
.
base_logic
.
lib
Require
Import
invariants
.
Set
Default
Proof
Using
"Type"
.
Lemma
demo_0
{
M
:
ucmraT
}
(
P
Q
:
uPred
M
)
:
Section
tests
.
Context
{
M
:
ucmraT
}
.
Lemma
demo_0
(
P
Q
:
uPred
M
)
:
□
(
P
∨
Q
)
-∗
(
∀
x
,
⌜
x
=
0
⌝
∨
⌜
x
=
1
⌝
)
→
(
Q
∨
P
)
.
Proof
.
iIntros
"#H #H2"
.
...
...
@@ -12,7 +14,7 @@ Proof.
iDestruct
(
"H2"
$!
10
)
as
"[%|%]"
.
done
.
done
.
Qed
.
Lemma
demo_1
(
M
:
ucmraT
)
(
P1
P2
P3
:
nat
→
uPred
M
)
:
Lemma
demo_1
(
P1
P2
P3
:
nat
→
uPred
M
)
:
(
∀
(
x
y
:
nat
)
a
b
,
x
≡
y
→
□
(
uPred_ownM
(
a
⋅
b
)
-∗
...
...
@@ -37,7 +39,7 @@ Proof.
-
done
.
Qed
.
Lemma
demo_2
(
M
:
ucmraT
)
(
P1
P2
P3
P4
Q
:
uPred
M
)
(
P5
:
nat
→
uPredC
M
):
Lemma
demo_2
(
P1
P2
P3
P4
Q
:
uPred
M
)
(
P5
:
nat
→
uPredC
M
):
P2
∗
(
P3
∗
Q
)
∗
True
∗
P1
∗
P2
∗
(
P4
∗
(
∃
x
:
nat
,
P5
x
∨
P3
))
∗
True
-∗
P1
-∗
(
True
∗
True
)
-∗
(((
P2
∧
False
∨
P2
∧
⌜
0
=
0
⌝
)
∗
P3
)
∗
Q
∗
P1
∗
True
)
∧
...
...
@@ -55,17 +57,17 @@ Proof.
*
iSplitL
"HQ"
.
iAssumption
.
by
iSplitL
"H1"
.
Qed
.
Lemma
demo_3
(
M
:
ucmraT
)
(
P1
P2
P3
:
uPred
M
)
:
Lemma
demo_3
(
P1
P2
P3
:
uPred
M
)
:
P1
∗
P2
∗
P3
-∗
▷
P1
∗
▷
(
P2
∗
∃
x
,
(
P3
∧
⌜
x
=
0
⌝
)
∨
P3
)
.
Proof
.
iIntros
"($ & $ & H)"
.
iFrame
"H"
.
iNext
.
by
iExists
0
.
Qed
.
Definition
foo
{
M
}
(
P
:
uPred
M
)
:=
(
P
→
P
)
%
I
.
Definition
bar
{
M
}
:
uPred
M
:=
(
∀
P
,
foo
P
)
%
I
.
Definition
foo
(
P
:
uPred
M
)
:=
(
P
→
P
)
%
I
.
Definition
bar
:
uPred
M
:=
(
∀
P
,
foo
P
)
%
I
.
Lemma
demo_4
(
M
:
ucmraT
)
:
True
-∗
@
bar
M
.
Lemma
demo_4
:
True
-∗
bar
.
Proof
.
iIntros
.
iIntros
(
P
)
"HP //"
.
Qed
.
Lemma
demo_5
(
M
:
ucmraT
)
(
x
y
:
M
)
(
P
:
uPred
M
)
:
Lemma
demo_5
(
x
y
:
M
)
(
P
:
uPred
M
)
:
(
∀
z
,
P
→
z
≡
y
)
-∗
(
P
-∗
(
x
,
x
)
≡
(
y
,
x
))
.
Proof
.
iIntros
"H1 H2"
.
...
...
@@ -74,7 +76,7 @@ Proof.
done
.
Qed
.
Lemma
demo_6
(
M
:
ucmraT
)
(
P
Q
:
uPred
M
)
:
Lemma
demo_6
(
P
Q
:
uPred
M
)
:
(
∀
x
y
z
:
nat
,
⌜
x
=
plus
0
x
⌝
→
⌜
y
=
0
⌝
→
⌜
z
=
0
⌝
→
P
→
□
Q
→
foo
(
x
≡
x
))
%
I
.
Proof
.
...
...
@@ -83,7 +85,7 @@ Proof.
iIntros
"# _ //"
.
Qed
.
Lemma
demo_7
(
M
:
ucmraT
)
(
P
Q1
Q2
:
uPred
M
)
:
P
∗
(
Q1
∧
Q2
)
-∗
P
∗
Q1
.
Lemma
demo_7
(
P
Q1
Q2
:
uPred
M
)
:
P
∗
(
Q1
∧
Q2
)
-∗
P
∗
Q1
.
Proof
.
iIntros
"[H1 [H2 _]]"
.
by
iFrame
.
Qed
.
Section
iris
.
...
...
@@ -101,11 +103,11 @@ Section iris.
Qed
.
End
iris
.
Lemma
demo_9
(
M
:
ucmraT
)
(
x
y
z
:
M
)
:
Lemma
demo_9
(
x
y
z
:
M
)
:
✓
x
→
⌜
y
≡
z
⌝
-∗
(
✓
x
∧
✓
x
∧
y
≡
z
:
uPred
M
)
.
Proof
.
iIntros
(
Hv
)
"Hxy"
.
by
iFrame
(
Hv
Hv
)
"Hxy"
.
Qed
.
Lemma
demo_10
(
M
:
ucmraT
)
(
P
Q
:
uPred
M
)
:
P
-∗
Q
-∗
True
.
Lemma
demo_10
(
P
Q
:
uPred
M
)
:
P
-∗
Q
-∗
True
.
Proof
.
iIntros
"HP HQ"
.
iAssert
True
%
I
as
"#_"
.
{
by
iClear
"HP HQ"
.
}
...
...
@@ -115,44 +117,44 @@ Proof.
done
.
Qed
.
Lemma
demo_11
(
M
:
ucmraT
)
(
P
Q
R
:
uPred
M
)
:
Lemma
demo_11
(
P
Q
R
:
uPred
M
)
:
(
P
-∗
True
-∗
True
-∗
Q
-∗
R
)
-∗
P
-∗
Q
-∗
R
.
Proof
.
iIntros
"H HP HQ"
.
by
iApply
(
"H"
with
"[$]"
)
.
Qed
.
(* Check coercions *)
Lemma
demo_12
(
M
:
ucmraT
)
(
P
:
Z
→
uPred
M
)
:
(
∀
x
,
P
x
)
-∗
∃
x
,
P
x
.
Lemma
demo_12
(
P
:
Z
→
uPred
M
)
:
(
∀
x
,
P
x
)
-∗
∃
x
,
P
x
.
Proof
.
iIntros
"HP"
.
iExists
(
0
:
nat
)
.
iApply
(
"HP"
$!
(
0
:
nat
))
.
Qed
.
Lemma
demo_13
(
M
:
ucmraT
)
(
P
:
uPred
M
)
:
(|
==>
False
)
-∗
|
==>
P
.
Lemma
demo_13
(
P
:
uPred
M
)
:
(|
==>
False
)
-∗
|
==>
P
.
Proof
.
iIntros
.
iAssert
False
%
I
with
"[> - //]"
as
%
[]
.
Qed
.
Lemma
demo_14
(
M
:
ucmraT
)
(
P
:
uPred
M
)
:
False
-∗
P
.
Lemma
demo_14
(
P
:
uPred
M
)
:
False
-∗
P
.
Proof
.
iIntros
"H"
.
done
.
Qed
.
(* Check instantiation and dependent types *)
Lemma
demo_15
(
M
:
ucmraT
)
(
P
:
∀
n
,
vec
nat
n
→
uPred
M
)
:
Lemma
demo_15
(
P
:
∀
n
,
vec
nat
n
→
uPred
M
)
:
(
∀
n
v
,
P
n
v
)
-∗
∃
n
v
,
P
n
v
.
Proof
.
iIntros
"H"
.
iExists
_,
[
#
10
]
.
iSpecialize
(
"H"
$!
_
[
#
10
])
.
done
.
Qed
.
Lemma
demo_16
(
M
:
ucmraT
)
(
P
Q
R
:
uPred
M
)
`{
!
PersistentP
R
}
:
Lemma
demo_16
(
P
Q
R
:
uPred
M
)
`{
!
PersistentP
R
}
:
P
-∗
Q
-∗
R
-∗
R
∗
Q
∗
P
∗
R
∨
False
.
Proof
.
eauto
with
iFrame
.
Qed
.
Lemma
demo_17
(
M
:
ucmraT
)
(
P
Q
R
:
uPred
M
)
`{
!
PersistentP
R
}
:
Lemma
demo_17
(
P
Q
R
:
uPred
M
)
`{
!
PersistentP
R
}
:
P
-∗
Q
-∗
R
-∗
R
∗
Q
∗
P
∗
R
∨
False
.
Proof
.
iIntros
"HP HQ #HR"
.
iCombine
"HR HQ HP HR"
as
"H"
.
auto
.
Qed
.
Lemma
test_iNext_evar
(
M
:
ucmraT
)
(
P
:
uPred
M
)
:
Lemma
test_iNext_evar
(
P
:
uPred
M
)
:
P
-∗
True
.
Proof
.
iIntros
"HP"
.
iAssert
(
▷
_
-∗
▷
P
)
%
I
as
"?"
;
last
done
.
iIntros
"?"
.
iNext
.
iAssumption
.
Qed
.
Lemma
test_iNext_sep1
(
M
:
ucmraT
)
(
P
Q
:
uPred
M
)
Lemma
test_iNext_sep1
(
P
Q
:
uPred
M
)
(
R1
:=
(
P
∗
Q
)
%
I
)
(
R2
:=
(
▷
P
∗
▷
Q
)
%
I
)
:
(
▷
P
∗
▷
Q
)
∗
R1
∗
R2
-∗
▷
(
P
∗
Q
)
∗
▷
R1
∗
R2
.
Proof
.
...
...
@@ -160,16 +162,18 @@ Proof.
rewrite
{
1
2
}(
lock
R1
)
.
(* check whether R1 has not been unfolded *)
done
.
Qed
.
Lemma
test_iNext_sep2
(
M
:
ucmraT
)
(
P
Q
:
uPred
M
)
:
Lemma
test_iNext_sep2
(
P
Q
:
uPred
M
)
:
▷
P
∗
▷
Q
-∗
▷
(
P
∗
Q
)
.
Proof
.
iIntros
"H"
.
iNext
.
iExact
"H"
.
(* Check that the laters are all gone. *)
Qed
.
Lemma
test_frame_persistent
(
M
:
ucmraT
)
(
P
Q
:
uPred
M
)
:
Lemma
test_frame_persistent
(
P
Q
:
uPred
M
)
:
□
P
-∗
Q
-∗
□
(
P
∗
P
)
∗
(
P
∧
Q
∨
Q
)
.
Proof
.
iIntros
"#HP"
.
iFrame
"HP"
.
iIntros
"$"
.
Qed
.
Lemma
test_split_box
(
M
:
ucmraT
)
(
P
Q
:
uPred
M
)
:
Lemma
test_split_box
(
P
Q
:
uPred
M
)
:
□
P
-∗
□
(
P
∗
P
)
.
Proof
.
iIntros
"#?"
.
by
iSplit
.
Qed
.
End
tests
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment