Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
c72d1bb1
Commit
c72d1bb1
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Prove more primitive version of uPred.eq_refl in model.
parent
5b224d9c
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/upred.v
+8
-5
8 additions, 5 deletions
algebra/upred.v
with
8 additions
and
5 deletions
algebra/upred.v
+
8
−
5
View file @
c72d1bb1
...
...
@@ -494,7 +494,7 @@ Lemma exist_intro {A} {Ψ : A → uPred M} a : Ψ a ⊢ (∃ a, Ψ a).
Proof
.
unseal
;
split
=>
n
x
??;
by
exists
a
.
Qed
.
Lemma
exist_elim
{
A
}
(
Φ
:
A
→
uPred
M
)
Q
:
(
∀
a
,
Φ
a
⊢
Q
)
→
(
∃
a
,
Φ
a
)
⊢
Q
.
Proof
.
unseal
;
intros
HΦΨ
;
split
=>
n
x
?
[
a
?];
by
apply
HΦΨ
with
a
.
Qed
.
Lemma
eq_refl
{
A
:
cofeT
}
(
a
:
A
)
P
:
P
⊢
(
a
≡
a
)
.
Lemma
eq_refl
{
A
:
cofeT
}
(
a
:
A
)
:
True
⊢
(
a
≡
a
)
.
Proof
.
unseal
;
by
split
=>
n
x
??;
simpl
.
Qed
.
Lemma
eq_rewrite
{
A
:
cofeT
}
a
b
(
Ψ
:
A
→
uPred
M
)
P
`{
HΨ
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
Ψ
}
:
P
⊢
(
a
≡
b
)
→
P
⊢
Ψ
a
→
P
⊢
Ψ
b
.
...
...
@@ -679,10 +679,13 @@ Lemma const_elim_r φ Q R : (φ → Q ⊢ R) → (Q ∧ ■ φ) ⊢ R.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
Lemma
const_equiv
(
φ
:
Prop
)
:
φ
→
(
■
φ
)
⊣⊢
True
.
Proof
.
intros
;
apply
(
anti_symm
_);
auto
using
const_intro
.
Qed
.
Lemma
eq_refl'
{
A
:
cofeT
}
(
a
:
A
)
P
:
P
⊢
(
a
≡
a
)
.
Proof
.
rewrite
(
True_intro
P
)
.
apply
eq_refl
.
Qed
.
Hint
Resolve
eq_refl'
.
Lemma
equiv_eq
{
A
:
cofeT
}
P
(
a
b
:
A
)
:
a
≡
b
→
P
⊢
(
a
≡
b
)
.
Proof
.
intros
->
;
apply
eq_refl
.
Qed
.
Proof
.
by
intros
->
.
Qed
.
Lemma
eq_sym
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
a
≡
b
)
⊢
(
b
≡
a
)
.
Proof
.
apply
(
eq_rewrite
a
b
(
λ
b
,
b
≡
a
)
%
I
);
auto
using
eq_refl
.
solve_proper
.
Qed
.
Proof
.
apply
(
eq_rewrite
a
b
(
λ
b
,
b
≡
a
)
%
I
);
auto
.
solve_proper
.
Qed
.
(* BI connectives *)
Lemma
sep_mono
P
P'
Q
Q'
:
P
⊢
Q
→
P'
⊢
Q'
→
(
P
★
P'
)
⊢
(
Q
★
Q'
)
.
...
...
@@ -898,7 +901,7 @@ Proof.
apply
(
anti_symm
(
⊢
));
auto
using
always_elim
.
apply
(
eq_rewrite
a
b
(
λ
b
,
□
(
a
≡
b
))
%
I
);
auto
.
{
intros
n
;
solve_proper
.
}
rewrite
-
(
eq_refl
a
True
)
always_const
;
auto
.
rewrite
-
(
eq_refl
a
)
always_const
;
auto
.
Qed
.
Lemma
always_and_sep
P
Q
:
(
□
(
P
∧
Q
))
⊣⊢
(
□
(
P
★
Q
))
.
Proof
.
apply
(
anti_symm
(
⊢
));
auto
using
always_and_sep_1
.
Qed
.
...
...
@@ -1174,5 +1177,5 @@ Hint Resolve and_intro and_elim_l' and_elim_r' : I.
Hint
Resolve
always_mono
:
I
.
Hint
Resolve
sep_elim_l'
sep_elim_r'
sep_mono
:
I
.
Hint
Immediate
True_intro
False_elim
:
I
.
Hint
Immediate
iff_refl
eq_refl
:
I
.
Hint
Immediate
iff_refl
eq_refl
'
:
I
.
End
uPred
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment