Skip to content
Snippets Groups Projects
Commit db735a45 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Merge branch 'ci/robbert/iFrame_later' into 'master'

Fix regression in iGPS caused by eebe055b.

See merge request FP/iris-coq!120
parents df9d11bf ba41ce54
No related branches found
No related tags found
No related merge requests found
......@@ -177,100 +177,101 @@ Proof. done. Qed.
Global Instance make_laterN_default P : MakeLaterN n P (▷^n P) | 100.
Proof. done. Qed.
Global Instance into_laterN_0 P : IntoLaterN 0 P P.
Global Instance into_laterN_0 only_head P : IntoLaterN only_head 0 P P.
Proof. done. Qed.
Global Instance into_laterN_later n n' m' P Q lQ :
Global Instance into_laterN_later only_head n n' m' P Q lQ :
NatCancel n 1 n' m'
(** If canceling has failed (i.e. [1 = m']), we should make progress deeper
into [P], as such, we continue with the [IntoLaterN] class, which is required
to make progress. If canceling has succeeded, we do not need to make further
progress, but there may still be a left-over (i.e. [n']) to cancel more deeply
into [P], as such, we continue with [MaybeIntoLaterN]. *)
TCIf (TCEq 1 m') (IntoLaterN n' P Q) (MaybeIntoLaterN n' P Q)
TCIf (TCEq 1 m') (IntoLaterN only_head n' P Q) (MaybeIntoLaterN only_head n' P Q)
MakeLaterN m' Q lQ
IntoLaterN n ( P) lQ | 2.
IntoLaterN only_head n ( P) lQ | 2.
Proof.
rewrite /MakeLaterN /IntoLaterN /MaybeIntoLaterN /NatCancel.
move=> Hn [_ ->|->] <-;
by rewrite -later_laterN -laterN_plus -Hn Nat.add_comm.
Qed.
Global Instance into_laterN_laterN n m n' m' P Q lQ :
Global Instance into_laterN_laterN only_head n m n' m' P Q lQ :
NatCancel n m n' m'
TCIf (TCEq m m') (IntoLaterN n' P Q) (MaybeIntoLaterN n' P Q)
TCIf (TCEq m m') (IntoLaterN only_head n' P Q) (MaybeIntoLaterN only_head n' P Q)
MakeLaterN m' Q lQ
IntoLaterN n (▷^m P) lQ | 1.
IntoLaterN only_head n (▷^m P) lQ | 1.
Proof.
rewrite /MakeLaterN /IntoLaterN /MaybeIntoLaterN /NatCancel.
move=> Hn [_ ->|->] <-; by rewrite -!laterN_plus -Hn Nat.add_comm.
Qed.
Global Instance into_laterN_and_l n P1 P2 Q1 Q2 :
IntoLaterN n P1 Q1 MaybeIntoLaterN n P2 Q2
IntoLaterN n (P1 P2) (Q1 Q2) | 10.
IntoLaterN false n P1 Q1 MaybeIntoLaterN false n P2 Q2
IntoLaterN false n (P1 P2) (Q1 Q2) | 10.
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> -> ->. by rewrite laterN_and. Qed.
Global Instance into_laterN_and_r n P P2 Q2 :
IntoLaterN n P2 Q2 IntoLaterN n (P P2) (P Q2) | 11.
IntoLaterN false n P2 Q2 IntoLaterN false n (P P2) (P Q2) | 11.
Proof.
rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_and -(laterN_intro _ P).
Qed.
Global Instance into_later_forall {A} n (Φ Ψ : A uPred M) :
( x, IntoLaterN n (Φ x) (Ψ x)) IntoLaterN n ( x, Φ x) ( x, Ψ x).
( x, IntoLaterN false n (Φ x) (Ψ x))
IntoLaterN false n ( x, Φ x) ( x, Ψ x).
Proof. rewrite /IntoLaterN /MaybeIntoLaterN laterN_forall=> ?. by apply forall_mono. Qed.
Global Instance into_later_exist {A} n (Φ Ψ : A uPred M) :
( x, IntoLaterN n (Φ x) (Ψ x))
IntoLaterN n ( x, Φ x) ( x, Ψ x).
( x, IntoLaterN false n (Φ x) (Ψ x))
IntoLaterN false n ( x, Φ x) ( x, Ψ x).
Proof. rewrite /IntoLaterN /MaybeIntoLaterN -laterN_exist_2=> ?. by apply exist_mono. Qed.
Global Instance into_laterN_or_l n P1 P2 Q1 Q2 :
IntoLaterN n P1 Q1 MaybeIntoLaterN n P2 Q2
IntoLaterN n (P1 P2) (Q1 Q2) | 10.
IntoLaterN false n P1 Q1 MaybeIntoLaterN false n P2 Q2
IntoLaterN false n (P1 P2) (Q1 Q2) | 10.
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> -> ->. by rewrite laterN_or. Qed.
Global Instance into_laterN_or_r n P P2 Q2 :
IntoLaterN n P2 Q2
IntoLaterN n (P P2) (P Q2) | 11.
IntoLaterN false n P2 Q2
IntoLaterN false n (P P2) (P Q2) | 11.
Proof.
rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_or -(laterN_intro _ P).
Qed.
Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 :
IntoLaterN n P1 Q1 MaybeIntoLaterN n P2 Q2
IntoLaterN n (P1 P2) (Q1 Q2) | 10.
IntoLaterN false n P1 Q1 MaybeIntoLaterN false n P2 Q2
IntoLaterN false n (P1 P2) (Q1 Q2) | 10.
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> -> ->. by rewrite laterN_sep. Qed.
Global Instance into_laterN_sep_r n P P2 Q2 :
IntoLaterN n P2 Q2
IntoLaterN n (P P2) (P Q2) | 11.
IntoLaterN false n P2 Q2
IntoLaterN false n (P P2) (P Q2) | 11.
Proof.
rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_sep -(laterN_intro _ P).
Qed.
Global Instance into_laterN_big_sepL n {A} (Φ Ψ : nat A uPred M) (l: list A) :
( x k, IntoLaterN n (Φ k x) (Ψ k x))
IntoLaterN n ([ list] k x l, Φ k x) ([ list] k x l, Ψ k x).
( x k, IntoLaterN false n (Φ k x) (Ψ k x))
IntoLaterN false n ([ list] k x l, Φ k x) ([ list] k x l, Ψ k x).
Proof.
rewrite /IntoLaterN /MaybeIntoLaterN=> ?.
rewrite big_opL_commute. by apply big_sepL_mono.
Qed.
Global Instance into_laterN_big_sepM n `{Countable K} {A}
(Φ Ψ : K A uPred M) (m : gmap K A) :
( x k, IntoLaterN n (Φ k x) (Ψ k x))
IntoLaterN n ([ map] k x m, Φ k x) ([ map] k x m, Ψ k x).
( x k, IntoLaterN false n (Φ k x) (Ψ k x))
IntoLaterN false n ([ map] k x m, Φ k x) ([ map] k x m, Ψ k x).
Proof.
rewrite /IntoLaterN /MaybeIntoLaterN=> ?.
rewrite big_opM_commute; by apply big_sepM_mono.
Qed.
Global Instance into_laterN_big_sepS n `{Countable A}
(Φ Ψ : A uPred M) (X : gset A) :
( x, IntoLaterN n (Φ x) (Ψ x))
IntoLaterN n ([ set] x X, Φ x) ([ set] x X, Ψ x).
( x, IntoLaterN false n (Φ x) (Ψ x))
IntoLaterN false n ([ set] x X, Φ x) ([ set] x X, Ψ x).
Proof.
rewrite /IntoLaterN /MaybeIntoLaterN=> ?.
rewrite big_opS_commute; by apply big_sepS_mono.
Qed.
Global Instance into_laterN_big_sepMS n `{Countable A}
(Φ Ψ : A uPred M) (X : gmultiset A) :
( x, IntoLaterN n (Φ x) (Ψ x))
IntoLaterN n ([ mset] x X, Φ x) ([ mset] x X, Ψ x).
( x, IntoLaterN false n (Φ x) (Ψ x))
IntoLaterN false n ([ mset] x X, Φ x) ([ mset] x X, Ψ x).
Proof.
rewrite /IntoLaterN /MaybeIntoLaterN=> ?.
rewrite big_opMS_commute; by apply big_sepMS_mono.
......@@ -651,7 +652,7 @@ Proof.
Qed.
Global Instance frame_later p R R' P Q Q' :
NoBackTrack (MaybeIntoLaterN 1 R' R)
NoBackTrack (MaybeIntoLaterN true 1 R' R)
Frame p R P Q MakeLaterN 1 Q Q' Frame p R' ( P) Q'.
Proof.
rewrite /Frame /MakeLaterN /MaybeIntoLaterN=>-[->] <- <-.
......@@ -659,7 +660,7 @@ Proof.
Qed.
Global Instance frame_laterN p n R R' P Q Q' :
NoBackTrack (MaybeIntoLaterN n R' R)
NoBackTrack (MaybeIntoLaterN true n R' R)
Frame p R P Q MakeLaterN n Q Q' Frame p R' (▷^n P) Q'.
Proof.
rewrite /Frame /MakeLaterN /MaybeIntoLaterN=>-[->] <- <-.
......
......@@ -99,19 +99,29 @@ IntoLaterN n P P' MaybeIntoLaterN n Q Q'
-------------------------------
IntoLaterN n (P /\ Q) (P /\ Q')
>>
The Boolean [only_head] indicates whether laters should only be stripped in
head position or also below other logical connectives. For [iNext] it should
strip laters below other logical connectives, but this should not happen while
framing, e.g. the following should succeed:
<<
Lemma test_iFrame_later_1 P Q : P ∗ ▷ Q -∗ ▷ (P ∗ ▷ Q).
Proof. iIntros "H". iFrame "H". Qed.
>>
*)
Class MaybeIntoLaterN {M} (n : nat) (P Q : uPred M) :=
Class MaybeIntoLaterN {M} (only_head : bool) (n : nat) (P Q : uPred M) :=
maybe_into_laterN : P ▷^n Q.
Arguments maybe_into_laterN {_} _ _ _ {_}.
Hint Mode MaybeIntoLaterN + - - - : typeclass_instances.
Arguments maybe_into_laterN {_} _ _ _ _ {_}.
Hint Mode MaybeIntoLaterN + + + - - : typeclass_instances.
Class IntoLaterN {M} (n : nat) (P Q : uPred M) :=
into_laterN :> MaybeIntoLaterN n P Q.
Class IntoLaterN {M} (only_head : bool) (n : nat) (P Q : uPred M) :=
into_laterN :> MaybeIntoLaterN only_head n P Q.
Arguments into_laterN {_} _ _ _ {_}.
Hint Mode IntoLaterN + - ! - : typeclass_instances.
Hint Mode IntoLaterN + + + ! - : typeclass_instances.
Instance maybe_into_laterN_default {M} n (P : uPred M) :
MaybeIntoLaterN n P P | 1000.
Instance maybe_into_laterN_default {M} only_head n (P : uPred M) :
MaybeIntoLaterN only_head n P P | 1000.
Proof. apply laterN_intro. Qed.
Class FromLaterN {M} (n : nat) (P Q : uPred M) := from_laterN : ▷^n Q P.
......
......@@ -473,7 +473,7 @@ Proof. rewrite /envs_entails. intros HΔ ?. by rewrite HΔ pure_True // left_id.
(** * Later *)
Class MaybeIntoLaterNEnv (n : nat) (Γ1 Γ2 : env (uPred M)) :=
into_laterN_env : env_Forall2 (MaybeIntoLaterN n) Γ1 Γ2.
into_laterN_env : env_Forall2 (MaybeIntoLaterN false n) Γ1 Γ2.
Class MaybeIntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs M) := {
into_later_persistent: MaybeIntoLaterNEnv n (env_persistent Δ1) (env_persistent Δ2);
into_later_spatial: MaybeIntoLaterNEnv n (env_spatial Δ1) (env_spatial Δ2)
......@@ -482,7 +482,7 @@ Class MaybeIntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs M) := {
Global Instance into_laterN_env_nil n : MaybeIntoLaterNEnv n Enil Enil.
Proof. constructor. Qed.
Global Instance into_laterN_env_snoc n Γ1 Γ2 i P Q :
MaybeIntoLaterNEnv n Γ1 Γ2 MaybeIntoLaterN n P Q
MaybeIntoLaterNEnv n Γ1 Γ2 MaybeIntoLaterN false n P Q
MaybeIntoLaterNEnv n (Esnoc Γ1 i P) (Esnoc Γ2 i Q).
Proof. by constructor. Qed.
......
......@@ -190,6 +190,12 @@ Lemma test_iFrame_persistent (P Q : uPred M) :
P -∗ Q -∗ (P P) (P Q Q).
Proof. iIntros "#HP". iFrame "HP". iIntros "$". Qed.
Lemma test_iFrame_later_1 P Q : P Q -∗ (P Q).
Proof. iIntros "H". iFrame "H". Qed.
Lemma test_iFrame_later_2 P Q : P Q -∗ ( P Q).
Proof. iIntros "H". iFrame "H". Qed.
Lemma test_iSplit_persistently P Q : P -∗ (P P).
Proof. iIntros "#?". by iSplit. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment