Newer
Older
\section{OFE and COFE constructions}
The (C)OFE structure on many types can be easily obtained by pointwise lifting of the structure of the components.
This is what we do for option $\maybe\cofe$, product $(M_i)_{i \in I}$ (with $I$ some finite index set), sum $\cofe + \cofe'$ and finite partial functions $K \fpfn \monoid$ (with $K$ infinite countable).
Given a OFE $\cofe$, we define $\latert\cofe$ as follows (using a datatype-like notation to define the type):
\latert\cofe \eqdef{}& \latertinj(x:\cofe) \\
\latertinj(x) \nequiv{n} \latertinj(y) \eqdef{}& n = 0 \lor x \nequiv{n-1} y
\end{align*}
Note that in the definition of the carrier $\latert\cofe$, $\latertinj$ is a constructor (like the constructors in Coq), \ie this is short for $\setComp{\latertinj(x)}{x \in \cofe}$.
$\latert(-)$ is a locally \emph{contractive} functor from $\OFEs$ to $\OFEs$.
\subsection{Uniform Predicates}
Given a CMRA $\monoid$, we define the COFE $\UPred(\monoid)$ of \emph{uniform predicates} over $\monoid$ as follows:
\begin{align*}
\UPred(\monoid) \eqdef{} \setComp{\pred: \nat \times \monoid \to \mProp}{
\begin{inbox}[c]
(\All n, x, y. \pred(n, x) \land x \nequiv{n} y \Ra \pred(n, y)) \land {}\\
(\All n, m, x, y. \pred(n, x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra \pred(m, y))
\end{inbox}
}
\end{align*}
where $\mProp$ is the set of meta-level propositions, \eg Coq's \texttt{Prop}.
$\UPred(-)$ is a locally non-expansive functor from $\CMRAs$ to $\COFEs$.
One way to understand this definition is to re-write it a little.
We start by defining the COFE of \emph{step-indexed propositions}: For every step-index, the proposition either holds or does not hold.
\SProp \eqdef{}& \psetdown{\nat} \\
\eqdef{}& \setComp{X \in \pset{\nat}}{ \All n, m. n \geq m \Ra n \in X \Ra m \in X } \\
X \nequiv{n} Y \eqdef{}& \All m \leq n. m \in X \Lra m \in Y
Notice that this notion of $\SProp$ is already hidden in the validity predicate $\mval_n$ of a CMRA:
We could equivalently require every CMRA to define $\mval_{-}(-) : \monoid \nfn \SProp$, replacing \ruleref{cmra-valid-ne} and \ruleref{cmra-valid-mono}.
Now we can rewrite $\UPred(\monoid)$ as monotone step-indexed predicates over $\monoid$, where the definition of a ``monotone'' function here is a little funny.
\begin{align*}
\UPred(\monoid) \cong{}& \monoid \monra \SProp \\
\eqdef{}& \setComp{\pred: \monoid \nfn \SProp}{\All n, m, x, y. n \in \pred(x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra m \in \pred(y)}
\end{align*}
The reason we chose the first definition is that it is easier to work with in Coq.
\section{RA and CMRA constructions}
Given a family $(M_i)_{i \in I}$ of CMRAs ($I$ finite), we construct a CMRA for the product $\prod_{i \in I} M_i$ by lifting everything pointwise.
Frame-preserving updates on the $M_i$ lift to the product:
\begin{mathpar}
\inferH{prod-update}
{\melt \mupd_{M_i} \meltsB}
{\mapinsert i \melt f \mupd \setComp{ \mapinsert i \meltB f}{\meltB \in \meltsB}}
\subsection{Sum}
\label{sec:summ}
The \emph{sum CMRA} $\monoid_1 \csumm \monoid_2$ for any CMRAs $\monoid_1$ and $\monoid_2$ is defined as (again, we use a datatype-like notation):
\monoid_1 \csumm \monoid_2 \eqdef{}& \cinl(\melt_1:\monoid_1) \mid \cinr(\melt_2:\monoid_2) \mid \mundef \\
\mval_n \eqdef{}& \setComp{\cinl(\melt_1)}{\melt_1 \in \mval'_n}
\cup \setComp{\cinr(\melt_2)}{\melt_2 \in \mval''_n} \\
\cinl(\melt_1) \mtimes \cinl(\meltB_1) \eqdef{}& \cinl(\melt_1 \mtimes \meltB_1) \\
% \munit \mtimes \ospending \eqdef{}& \ospending \mtimes \munit \eqdef \ospending \\
% \munit \mtimes \osshot(\melt) \eqdef{}& \osshot(\melt) \mtimes \munit \eqdef \osshot(\melt) \\
\mcore{\cinl(\melt_1)} \eqdef{}& \begin{cases}\mnocore & \text{if $\mcore{\melt_1} = \mnocore$} \\ \cinl({\mcore{\melt_1}}) & \text{otherwise} \end{cases}
\end{align*}
The composition and core for $\cinr$ are defined symmetrically.
The remaining cases of the composition and core are all $\mundef$.
Above, $\mval'$ refers to the validity of $\monoid_1$, and $\mval''$ to the validity of $\monoid_2$.
Notice that we added the artificial ``invalid'' (or ``undefined'') element $\mundef$ to this CMRA just in order to make certain compositions of elements (in this case, $\cinl$ and $\cinr$) invalid.
The step-indexed equivalence is inductively defined as follows:
\begin{mathpar}
\infer{x \nequiv{n} y}{\cinl(x) \nequiv{n} \cinl(y)}
\infer{x \nequiv{n} y}{\cinr(x) \nequiv{n} \cinr(y)}
\axiom{\mundef \nequiv{n} \mundef}
We obtain the following frame-preserving updates, as well as their symmetric counterparts:
\begin{mathpar}
\inferH{sum-update}
{\melt \mupd_{M_1} \meltsB}
{\cinl(\melt) \mupd \setComp{ \cinl(\meltB)}{\meltB \in \meltsB}}
\inferH{sum-swap}
{\All \melt_\f, n. \melt \mtimes \melt_\f \notin \mval'_n \and \meltB \in \mval''}
{\cinl(\melt) \mupd \cinr(\meltB)}
\end{mathpar}
Crucially, the second rule allows us to \emph{swap} the ``side'' of the sum that the CMRA is on if $\mval$ has \emph{no possible frame}.
\subsection{Option}
The definition of the (CM)RA axioms already lifted the composition operation on $\monoid$ to one on $\maybe\monoid$.
We can easily extend this to a full CMRA by defining a suitable core, namely
\begin{align*}
\mcore{\mnocore} \eqdef{}& \mnocore & \\
\mcore{\maybe\melt} \eqdef{}& \mcore\melt & \text{If $\maybe\melt \neq \mnocore$}
\end{align*}
Notice that this core is total, as the result always lies in $\maybe\monoid$ (rather than in $\maybe{\mathord{\maybe\monoid}}$).
\subsection{Finite partial function}
\label{sec:fpfnm}
Given some infinite countable $K$ and some CMRA $\monoid$, the set of finite partial functions $K \fpfn \monoid$ is equipped with a CMRA structure by lifting everything pointwise.
We obtain the following frame-preserving updates:
\begin{mathpar}
\inferH{fpfn-alloc-strong}
{\text{$G$ infinite} \and \melt \in \mval}
{\emptyset \mupd \setComp{\mapsingleton \gname \melt}{\gname \in G}}
{\emptyset \mupd \setComp{\mapsingleton \gname \melt}{\gname \in K}}
{\mapinsert i \melt f] \mupd \setComp{ \mapinsert i \meltB f}{\meltB \in \meltsB}}
Above, $\mval$ refers to the validity of $\monoid$.
$K \fpfn (-)$ is a locally non-expansive functor from $\CMRAs$ to $\CMRAs$.
\subsection{Agreement}
Given some OFE $\cofe$, we define the CMRA $\agm(\cofe)$ as follows:
\agm(\cofe) \eqdef{}& \setComp{\melt \in \finpset\cofe}{c \neq \emptyset} /\ {\sim} \\[-0.2em]
\melt \nequiv{n} \meltB \eqdef{}& (\All x \in \melt. \Exists y \in \meltB. x \nequiv{n} y) \land (\All y \in \meltB. \Exists x \in \melt. x \nequiv{n} y) \\
\textnormal{where }& \melt \sim \meltB \eqdef{} \All n. \melt \nequiv{n} \meltB \\
~\\
% \All n \in {\melt.V}.\, \melt.x \nequiv{n} \meltB.x \\
\mval_n \eqdef{}& \setComp{\melt \in \agm(\cofe)}{ \All x, y \in \melt. x \nequiv{n} y } \\
\melt \mtimes \meltB \eqdef{}& \melt \cup \meltB
%Note that the carrier $\agm(\cofe)$ is a \emph{record} consisting of the two fields $c$ and $V$.
$\agm(-)$ is a locally non-expansive functor from $\OFEs$ to $\CMRAs$.
We define a non-expansive injection $\aginj$ into $\agm(\cofe)$ as follows:
\[ \aginj(x) \eqdef \set{x} \]
There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can show the following:
\begin{mathpar}
\axiomH{ag-dup}{\aginj(x) = \aginj(x)\mtimes\aginj(x)}
\axiomH{ag-agree}{\aginj(x) \mtimes \aginj(y) \in \mval_n \Lra x \nequiv{n} y}
Given an OFE $\cofe$, we define a CMRA $\exm(\cofe)$ such that at most one $x \in \cofe$ can be owned:
\exm(\cofe) \eqdef{}& \exinj(\cofe) \mid \mundef \\
\mval_n \eqdef{}& \setComp{\melt\in\exm(\cofe)}{\melt \neq \mundef}
All cases of composition go to $\mundef$.
\mcore{\exinj(x)} \eqdef{}& \mnocore &
\mcore{\mundef} \eqdef{}& \mundef
Remember that $\mnocore$ is the ``dummy'' element in $\maybe\monoid$ indicating (in this case) that $\exinj(x)$ has no core.
The step-indexed equivalence is inductively defined as follows:
\begin{mathpar}
\infer{x \nequiv{n} y}{\exinj(x) \nequiv{n} \exinj(y)}
\axiom{\mundef \nequiv{n} \mundef}
$\exm(-)$ is a locally non-expansive functor from $\OFEs$ to $\CMRAs$.
We obtain the following frame-preserving update:
\begin{mathpar}
\inferH{ex-update}{}
{\exinj(x) \mupd \exinj(y)}
\end{mathpar}
%TODO: These need syncing with Coq
% \subsection{Finite Powerset Monoid}
% Given an infinite set $X$, we define a monoid $\textmon{PowFin}$ with carrier $\mathcal{P}^{\textrm{fin}}(X)$ as follows:
% \[
% \melt \cdot \meltB \;\eqdef\; \melt \cup \meltB \quad \mbox{if } \melt \cap \meltB = \emptyset
% \]
% We obtain:
% \begin{mathpar}
% \inferH{PowFinUpd}{}
% {\emptyset \mupd \{ \{x\} \mid x \in X \}}
% \end{mathpar}
% \begin{proof}[Proof of \ruleref{PowFinUpd}]
% Assume some frame $\melt_\f \sep \emptyset$. Since $\melt_\f$ is finite and $X$ is infinite, there exists an $x \notin \melt_\f$.
% Pick that for the result.
% \end{proof}
% The powerset monoids is cancellative.
% \begin{proof}[Proof of cancellativity]
% Let $\melt_\f \mtimes \melt = \melt_\f \mtimes \meltB \neq \mzero$.
% So we have $\melt_\f \sep \melt$ and $\melt_\f \sep \meltB$, and we have to show $\melt = \meltB$.
% Assume $x \in \melt$. Hence $x \in \melt_\f \mtimes \melt$ and thus $x \in \melt_\f \mtimes \meltB$.
% By disjointness, $x \notin \melt_\f$ and hence $x \in meltB$.
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
% The other direction works the same way.
% \end{proof}
% \subsection{Fractional monoid}
% \label{sec:fracm}
% Given a monoid $M$, we define a monoid representing fractional ownership of some piece $\melt \in M$.
% The idea is to preserve all the frame-preserving update that $M$ could have, while additionally being able to do \emph{any} update if we own the full state (as determined by the fraction being $1$).
% Let $\fracm{M}$ be the monoid with carrier $(((0, 1] \cap \mathbb{Q}) \times M) \uplus \{\munit\}$ and multiplication
% \begin{align*}
% (q, a) \mtimes (q', a') &\eqdef (q + q', a \mtimes a') \qquad \mbox{if $q+q'\le 1$} \\
% (q, a) \mtimes \munit &\eqdef (q,a) \\
% \munit \mtimes (q,a) &\eqdef (q,a).
% \end{align*}
% We get the following frame-preserving update.
% \begin{mathpar}
% \inferH{FracUpdFull}
% {a, b \in M}
% {(1, a) \mupd (1, b)}
% \and\inferH{FracUpdLocal}
% {a \mupd_M B}
% {(q, a) \mupd \{q\} \times B}
% \end{mathpar}
% \begin{proof}[Proof of \ruleref{FracUpdFull}]
% Assume some $f \sep (1, a)$. This can only be $f = \munit$, so showing $f \sep (1, b)$ is trivial.
% \end{proof}
% \begin{proof}[Proof of \ruleref{FracUpdLocal}]
% Assume some $f \sep (q, a)$. If $f = \munit$, then $f \sep (q, b)$ is trivial for any $b \in B$. Just pick the one we obtain by choosing $\munit_M$ as the frame for $a$.
% In the interesting case, we have $f = (q_\f, a_\f)$.
% Obtain $b$ such that $b \in B \land b \sep a_\f$.
% Then $(q, b) \sep f$, and we are done.
% \end{proof}
% $\fracm{M}$ is cancellative if $M$ is cancellative.
% \begin{proof}[Proof of cancellativitiy]
% If $\melt_\f = \munit$, we are trivially done.
% So let $\melt_\f = (q_\f, \melt_\f')$.
% If $\melt = \munit$, then $\meltB = \munit$ as otherwise the fractions could not match up.
% Again, we are trivially done.
% Similar so for $\meltB = \munit$.
% So let $\melt = (q_a, \melt')$ and $\meltB = (q_b, \meltB')$.
% We have $(q_\f + q_a, \melt_\f' \mtimes \melt') = (q_\f + q_b, \melt_\f' \mtimes \meltB')$.
% We have to show $q_a = q_b$ and $\melt' = \meltB'$.
% The first is trivial, the second follows from cancellativitiy of $M$.
% \end{proof}
\subsection{Authoritative}
\label{sec:auth-cmra}
Given a CMRA $M$, we construct $\authm(M)$ modeling someone owning an \emph{authoritative} element $\melt$ of $M$, and others potentially owning fragments $\meltB \mincl \melt$ of $\melt$.
We assume that $M$ has a unit $\munit$, and hence its core is total.
(If $M$ is an exclusive monoid, the construction is very similar to a half-ownership monoid with two asymmetric halves.)
\begin{align*}
\authm(M) \eqdef{}& \maybe{\exm(M)} \times M \\
\mval_n \eqdef{}& \setComp{ (x, \meltB) \in \authm(M) }{ \meltB \in \mval_n \land (x = \mnocore \lor \Exists \melt. x = \exinj(\melt) \land \meltB \mincl_n \melt) } \\
(x_1, \meltB_1) \mtimes (x_2, \meltB_2) \eqdef{}& (x_1 \mtimes x_2, \meltB_2 \mtimes \meltB_2) \\
\mcore{(x, \meltB)} \eqdef{}& (\mnocore, \mcore\meltB) \\
(x_1, \meltB_1) \nequiv{n} (x_2, \meltB_2) \eqdef{}& x_1 \nequiv{n} x_2 \land \meltB_1 \nequiv{n} \meltB_2
\end{align*}
Note that $(\mnocore, \munit)$ is the unit and asserts no ownership whatsoever, but $(\exinj(\munit), \munit)$ asserts that the authoritative element is $\munit$.
Let $\melt, \meltB \in M$.
We write $\authfull \melt$ for full ownership $(\exinj(\melt), \munit)$ and $\authfrag \meltB$ for fragmental ownership $(\mnocore, \meltB)$ and $\authfull \melt , \authfrag \meltB$ for combined ownership $(\exinj(\melt), \meltB)$.
The frame-preserving update involves the notion of a \emph{local update}:
\newcommand\lupd{\stackrel{\mathrm l}{\mupd}}
\begin{defn}
It is possible to do a \emph{local update} from $\melt_1$ and $\meltB_1$ to $\melt_2$ and $\meltB_2$, written $(\melt_1, \meltB_1) \lupd (\melt_2, \meltB_2)$, if
\[ \All n, \maybe{\melt_\f}. \melt_1 \in \mval_n \land \melt_1 \nequiv{n} \meltB_1 \mtimes \maybe{\melt_\f} \Ra \melt_2 \in \mval_n \land \melt_2 \nequiv{n} \meltB_2 \mtimes \maybe{\melt_\f} \]
\end{defn}
In other words, the idea is that for every possible frame $\maybe{\melt_\f}$ completing $\meltB_1$ to $\melt_1$, the same frame also completes $\meltB_2$ to $\melt_2$.
We then obtain
\begin{mathpar}
\inferH{auth-update}
{(\melt_1, \meltB_1) \lupd (\melt_2, \meltB_2)}
{\authfull \melt_1 , \authfrag \meltB_1 \mupd \authfull \melt_2 , \authfrag \meltB_2}
\end{mathpar}
\subsection{STS with tokens}
Given a state-transition system~(STS, \ie a directed graph) $(\STSS, {\stsstep} \subseteq \STSS \times \STSS)$, a set of tokens $\STST$, and a labeling $\STSL: \STSS \ra \wp(\STST)$ of \emph{protocol-owned} tokens for each state, we construct an RA modeling an authoritative current state and permitting transitions given a \emph{bound} on the current state and a set of \emph{locally-owned} tokens.
The construction follows the idea of STSs as described in CaReSL \cite{caresl}.
We first lift the transition relation to $\STSS \times \wp(\STST)$ (implementing a \emph{law of token conservation}) and define a stepping relation for the \emph{frame} of a given token set:
\begin{align*}
(s, T) \stsstep (s', T') \eqdef{}& s \stsstep s' \land \STSL(s) \uplus T = \STSL(s') \uplus T' \\
s \stsfstep{T} s' \eqdef{}& \Exists T_1, T_2. T_1 \disj \STSL(s) \cup T \land (s, T_1) \stsstep (s', T_2)
\end{align*}
We further define \emph{closed} sets of states (given a particular set of tokens) as well as the \emph{closure} of a set:
\begin{align*}
\STSclsd(S, T) \eqdef{}& \All s \in S. \STSL(s) \disj T \land \left(\All s'. s \stsfstep{T} s' \Ra s' \in S\right) \\
\upclose(S, T) \eqdef{}& \setComp{ s' \in \STSS}{\Exists s \in S. s \stsftrans{T} s' }
\end{align*}
The STS RA is defined as follows
\begin{align*}
\monoid \eqdef{}& \STSauth(s:\STSS, T:\wp(\STST) \mid \STSL(s) \disj T) \mid{}\\& \STSfrag(S: \wp(\STSS), T: \wp(\STST) \mid \STSclsd(S, T) \land S \neq \emptyset) \mid \mundef \\
\mval \eqdef{}& \setComp{\melt\in\monoid}{\melt \neq \mundef} \\
\STSfrag(S_1, T_1) \mtimes \STSfrag(S_2, T_2) \eqdef{}& \STSfrag(S_1 \cap S_2, T_1 \cup T_2) \qquad\qquad\qquad \text{if $T_1 \disj T_2$ and $S_1 \cap S_2 \neq \emptyset$} \\
\STSfrag(S, T) \mtimes \STSauth(s, T') \eqdef{}& \STSauth(s, T') \mtimes \STSfrag(S, T) \eqdef \STSauth(s, T \cup T') \qquad \text{if $T \disj T'$ and $s \in S$} \\
\mcore{\STSfrag(S, T)} \eqdef{}& \STSfrag(\upclose(S, \emptyset), \emptyset) \\
\mcore{\STSauth(s, T)} \eqdef{}& \STSfrag(\upclose(\set{s}, \emptyset), \emptyset)
\end{align*}
The remaining cases are all $\mundef$.
We will need the following frame-preserving update:
\begin{mathpar}
\inferH{sts-step}{(s, T) \ststrans (s', T')}
{\STSauth(s, T) \mupd \STSauth(s', T')}
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
\inferH{sts-weaken}
{\STSclsd(S_2, T_2) \and S_1 \subseteq S_2 \and T_2 \subseteq T_1}
{\STSfrag(S_1, T_1) \mupd \STSfrag(S_2, T_2)}
\end{mathpar}
\paragraph{The core is not a homomorphism.}
The core of the STS construction is only satisfying the RA axioms because we are \emph{not} demanding the core to be a homomorphism---all we demand is for the core to be monotone with respect the \ruleref{ra-incl}.
In other words, the following does \emph{not} hold for the STS core as defined above:
\[ \mcore\melt \mtimes \mcore\meltB = \mcore{\melt\mtimes\meltB} \]
To see why, consider the following STS:
\newcommand\st{\textlog{s}}
\newcommand\tok{\textmon{t}}
\begin{center}
\begin{tikzpicture}[sts]
\node at (0,0) (s1) {$\st_1$};
\node at (3,0) (s2) {$\st_2$};
\node at (9,0) (s3) {$\st_3$};
\node at (6,0) (s4) {$\st_4$\\$[\tok_1, \tok_2]$};
\path[sts_arrows] (s2) edge (s4);
\path[sts_arrows] (s3) edge (s4);
\end{tikzpicture}
\end{center}
Now consider the following two elements of the STS RA:
\[ \melt \eqdef \STSfrag(\set{\st_1,\st_2}, \set{\tok_1}) \qquad\qquad
\meltB \eqdef \STSfrag(\set{\st_1,\st_3}, \set{\tok_2}) \]
We have:
\begin{mathpar}
{\melt\mtimes\meltB = \STSfrag(\set{\st_1}, \set{\tok_1, \tok_2})}
{\mcore\melt = \STSfrag(\set{\st_1, \st_2, \st_4}, \emptyset)}
{\mcore\meltB = \STSfrag(\set{\st_1, \st_3, \st_4}, \emptyset)}
{\mcore\melt \mtimes \mcore\meltB = \STSfrag(\set{\st_1, \st_4}, \emptyset) \neq
\mcore{\melt \mtimes \meltB} = \STSfrag(\set{\st_1}, \emptyset)}
\end{mathpar}