Newer
Older
From iris.proofmode Require Import coq_tactics intro_patterns spec_patterns.
From iris.algebra Require Export upred.
From iris.proofmode Require Export notation.
From iris.prelude Require Import stringmap.
Declare Reduction env_cbv := cbv [
env_lookup env_fold env_lookup_delete env_delete env_app
env_replace env_split_go env_split
decide (* operational classes *)
sumbool_rec sumbool_rect (* sumbool *)
bool_eq_dec bool_rec bool_rect bool_dec eqb andb (* bool *)
assci_eq_dec ascii_to_digits Ascii.ascii_dec Ascii.ascii_rec Ascii.ascii_rect
string_eq_dec string_rec string_rect (* strings *)
env_persistent env_spatial envs_persistent
envs_lookup envs_lookup_delete envs_delete envs_app
envs_simple_replace envs_replace envs_split envs_clear_spatial].
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
Ltac env_cbv :=
match goal with |- ?u => let v := eval env_cbv in u in change v end.
Ltac iFresh :=
lazymatch goal with
|- of_envs ?Δ ⊢ _ =>
match goal with
| _ => eval vm_compute in (fresh_string_of_set "~" (dom stringset Δ))
| _ => eval cbv in (fresh_string_of_set "~" (dom stringset Δ))
end
| _ => constr:"~"
end.
(** * Misc *)
Tactic Notation "iTypeOf" constr(H) tactic(tac):=
let Δ := match goal with |- of_envs ?Δ ⊢ _ => Δ end in
match eval env_cbv in (envs_lookup H Δ) with
| Some (?p,?P) => tac p P
end.
(** * Start a proof *)
Tactic Notation "iProof" :=
lazymatch goal with
| |- of_envs _ ⊢ _ => fail "iProof: already in Iris proofmode"
| |- True ⊢ _ => apply tac_adequate
| |- _ ⊢ _ => apply uPred.wand_entails, tac_adequate
end.
(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
[env_cbv; reflexivity || fail "iRename:" H1 "not found"
|env_cbv; reflexivity || fail "iRename:" H2 "not fresh"|].
Tactic Notation "iClear" constr(Hs) :=
let rec go Hs :=
match Hs with
| [] => idtac
| ?H :: ?Hs =>
eapply tac_clear with _ H _ _; (* (i:=H) *)
[env_cbv; reflexivity || fail "iClear:" H "not found"|go Hs]
end in
let Hs := words Hs in go Hs.
Tactic Notation "iClear" "★" :=
eapply tac_clear_spatial; [env_cbv; reflexivity|].
(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
eapply tac_exact with H _; (* (i:=H) *)
env_cbv;
lazymatch goal with
| |- None = Some _ => fail "iExact:" H "not found"
| |- Some (_, ?P) = Some _ =>
reflexivity || fail "iExact:" H ":" P "does not match goal"
end.
Tactic Notation "iAssumptionCore" :=
let rec find Γ i P :=
match Γ with
| Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j| find Γ i P]
end in
match goal with
| |- envs_lookup ?i (Envs ?Γp ?Γs) = Some (_, ?P) =>
first [is_evar i; fail 1 | env_cbv; reflexivity]
| |- envs_lookup ?i (Envs ?Γp ?Γs) = Some (_, ?P) =>
is_evar i; first [find Γp i P | find Γs i P]; env_cbv; reflexivity
end.
Tactic Notation "iAssumption" :=
eapply tac_exact; iAssumptionCore;
match goal with |- _ = Some (_, ?P) => fail "iAssumption:" P "not found" end.
(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.
Tactic Notation "iContradiction" constr(H) := iExFalso; iExact H.
Tactic Notation "iContradiction" := iExFalso; iAssumption.
(** * Pure introduction *)
Tactic Notation "iIntro" "{" simple_intropattern(x) "}" :=
lazymatch goal with
| |- _ ⊢ (∀ _, _) => apply tac_forall_intro; intros x
| |- _ ⊢ (?P → _) =>
eapply tac_impl_intro_pure;
[apply _ || fail "iIntro:" P "not pure"|]; intros x
| |- _ ⊢ (?P -★ _) =>
eapply tac_wand_intro_pure;
[apply _ || fail "iIntro:" P "not pure"|]; intros x
| |- _ => intros x
end.
(** * Introduction *)
Tactic Notation "iIntro" constr(H) :=
lazymatch goal with
| |- _ ⊢ (?Q → _) =>
eapply tac_impl_intro with _ H; (* (i:=H) *)
[reflexivity || fail "iIntro: introducing " H ":" Q
"into non-empty spatial context"
|env_cbv; reflexivity || fail "iIntro:" H "not fresh"|]
| |- _ ⊢ (_ -★ _) =>
eapply tac_wand_intro with _ H; (* (i:=H) *)
[env_cbv; reflexivity || fail "iIntro:" H "not fresh"|]
| _ => fail "iIntro: nothing to introduce"
end.
Tactic Notation "iIntro" "#" constr(H) :=
lazymatch goal with
| |- _ ⊢ (?P → _) =>
eapply tac_impl_intro_persistent with _ H _; (* (i:=H) *)
[apply _ || fail "iIntro: " P " not persistent"
|env_cbv; reflexivity || fail "iIntro:" H "not fresh"|]
| |- _ ⊢ (?P -★ _) =>
eapply tac_wand_intro_persistent with _ H _; (* (i:=H) *)
[apply _ || fail "iIntro: " P " not persistent"
|env_cbv; reflexivity || fail "iIntro:" H "not fresh"|]
| _ => fail "iIntro: nothing to introduce"
end.
(** * Making hypotheses persistent or pure *)
Tactic Notation "iPersistent" constr(H) :=
eapply tac_persistent with _ H _ _ _; (* (i:=H) *)
[env_cbv; reflexivity || fail "iPersistent:" H "not found"
|let Q := match goal with |- ToPersistentP ?Q _ => Q end in
apply _ || fail "iPersistent:" H ":" Q "not persistent"
|env_cbv; reflexivity|].
Tactic Notation "iDuplicate" constr(H1) "as" constr(H2) :=
eapply tac_duplicate with _ H1 _ H2 _; (* (i:=H1) (j:=H2) *)
[env_cbv; reflexivity || fail "iDuplicate:" H1 "not found"
|reflexivity || fail "iDuplicate:" H1 "not in persistent context"
|env_cbv; reflexivity || fail "iDuplicate:" H2 "not fresh"|].
Tactic Notation "iDuplicate" "#" constr(H1) "as" constr(H2) :=
iPersistent H1; iDuplicate H1 as H2.
Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
[env_cbv; reflexivity || fail "iPure:" H "not found"
|let P := match goal with |- ToPure ?P _ => P end in
apply _ || fail "iPure:" H ":" P "not pure"
|intros pat].
Tactic Notation "iPure" constr(H) := iPure H as ?.
Tactic Notation "iPureIntro" := apply uPred.const_intro.
(** * Specialize *)
Tactic Notation "iForallSpecialize" constr(H) open_constr(x) :=
eapply tac_forall_specialize with _ H _ _ x; (* (i:=H) (a:=x) *)
[env_cbv; reflexivity || fail "iSpecialize:" H "not found"
|env_cbv; reflexivity|].
Tactic Notation "iSpecialize" constr (H) constr(pat) :=
let solve_to_wand H1 :=
let P := match goal with |- ToWand ?P _ _ => P end in
apply _ || fail "iSpecialize:" H1 ":" P "not an implication/wand" in
let rec go H1 pats :=
lazymatch pats with
| [] => idtac
| SAlways :: ?pats => iPersistent H1; go H1 pats
| SSplit true [] :: SAlways :: ?pats =>
eapply tac_specialize_domain_persistent with _ _ H1 _ _ _ _ _;
[env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|let Q := match goal with |- ToPersistentP ?Q _ => Q end in
apply _ || fail "iSpecialize:" Q "not persistent"
|env_cbv; reflexivity
| |go H1 pats]
| SName ?H2 :: SAlways :: ?pats =>
eapply tac_specialize_domain_persistent with _ _ H1 _ _ _ _ _;
[env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|let Q := match goal with |- ToPersistentP ?Q _ => Q end in
apply _ || fail "iSpecialize:" Q "not persistent"
|env_cbv; reflexivity
|iExact H2 || fail "iSpecialize:" H2 "not found or wrong type"
|go H1 pats]
| SName ?H2 :: ?pats =>
eapply tac_specialize with _ _ H2 _ H1 _ _ _ _; (* (j:=H1) (i:=H2) *)
[env_cbv; reflexivity || fail "iSpecialize:" H2 "not found"
|env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|env_cbv; reflexivity|go H1 pats]
| SPersistent :: ?pats =>
eapply tac_specialize_range_persistent with _ _ H1 _ _ _ _;
[env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|let Q := match goal with |- PersistentP ?Q => Q end in
apply _ || fail "iSpecialize:" Q "not persistent"
|env_cbv; reflexivity| |go H1 pats]
| SPure :: ?pats =>
eapply tac_specialize_range_persistent with _ _ H1 _ _ _ _; (* make custom tac_ lemma *)
[env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|let Q := match goal with |- PersistentP ?Q => Q end in
apply _ || fail "iSpecialize:" Q "not persistent"
|env_cbv; reflexivity|iPureIntro|go H1 pats]
| SSplit ?lr ?Hs :: ?pats =>
eapply tac_specialize_assert with _ _ _ H1 _ lr Hs _ _ _;
[env_cbv; reflexivity || fail "iSpecialize:" H1 "not found"
|solve_to_wand H1
|env_cbv; reflexivity || fail "iSpecialize:" Hs "not found"|
|go H1 pats]
end in
repeat (iForallSpecialize H _);
let pats := spec_pat.parse pat in go H pats.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) "}" :=
iForallSpecialize H x1.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1)
open_constr(x2) "}" :=
iSpecialize H { x1 }; iForallSpecialize H x2.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) "}" :=
iSpecialize H { x1 x2 }; iForallSpecialize H x3.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) "}" :=
iSpecialize H { x1 x2 x3 }; iForallSpecialize H x4.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) "}" :=
iSpecialize H { x1 x2 x3 x4 }; iForallSpecialize H x5.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) "}" :=
iSpecialize H { x1 x2 x3 x4 x5 }; iForallSpecialize H x6.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6)
open_constr(x7) "}" :=
iSpecialize H { x1 x2 x3 x4 x5 x6 }; iForallSpecialize H x7.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6)
open_constr(x7) open_constr(x8) "}" :=
iSpecialize H { x1 x2 x3 x4 x5 x6 x7 }; iForallSpecialize H x8.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) "}" constr(Hs) :=
iSpecialize H { x1 }; iSpecialize H @ Hs.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) "}"
constr(Hs) :=
iSpecialize H { x1 x2 }; iSpecialize H @ Hs.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 }; iSpecialize H @ Hs.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 }; iSpecialize H @ Hs.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 x5 }; iSpecialize H @ Hs.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) "}"
constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 x5 x6 }; iSpecialize H @ Hs.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6)
open_constr(x7) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 x5 x6 x7 }; iSpecialize H @ Hs.
Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6)
open_constr(x7) open_constr(x8) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 x5 x6 x7 x8 }; iSpecialize H @ Hs.
(** * Pose proof *)
Tactic Notation "iPoseProof" open_constr(lem) "as" constr(H) :=
eapply tac_pose_proof with _ H _; (* (j:=H) *)
[first
[eapply lem
|apply uPred.entails_impl; eapply lem
|apply uPred.equiv_iff; eapply lem]
|env_cbv; reflexivity || fail "iPoseProof:" H "not fresh"|].
Tactic Notation "iPoseProof" open_constr(lem) constr(Hs) "as" constr(H) :=
iPoseProof lem as H; last iSpecialize H Hs.
Tactic Notation "iPoseProof" open_constr(lem) :=
let H := iFresh in iPoseProof lem as H.
Tactic Notation "iPoseProof" open_constr(lem) constr(Hs) :=
let H := iFresh in iPoseProof lem Hs as H.
Tactic Notation "iPoseProof" open_constr(lem) "as" tactic(tac) :=
lazymatch type of lem with
| string => tac lem
| _ => let H := iFresh in iPoseProof lem as H; last tac H; try apply _
end.
Tactic Notation "iPoseProof" open_constr(lem) constr(Hs) "as" tactic(tac) :=
iPoseProof lem as (fun H => iSpecialize H Hs; last tac H).
(** * Apply *)
Tactic Notation "iApply" open_constr (lem) :=
iPoseProof lem as (fun H => repeat (iForallSpecialize H _); first
[iExact H
|eapply tac_apply with _ H _ _ _;
[env_cbv; reflexivity || fail 1 "iApply:" lem "not found"
|apply _ || fail 1 "iApply: cannot apply" lem|]]).
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) "}" :=
iSpecialize H { x1 }; last iApply H.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1)
open_constr(x2) "}" :=
iSpecialize H { x1 x2 }; last iApply H.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) "}" :=
iSpecialize H { x1 x2 x3 }; last iApply H.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) "}" :=
iSpecialize H { x1 x2 x3 x4 }; last iApply H.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) "}" :=
iSpecialize H { x1 x2 x3 x4 x5 }; last iApply H.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) "}" :=
iSpecialize H { x1 x2 x3 x4 x5 x6 }; last iApply H.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6)
open_constr(x7) "}" :=
iSpecialize H { x1 x2 x3 x4 x5 x6 x7 }; last iApply H.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6)
open_constr(x7) open_constr(x8) "}" :=
iSpecialize H { x1 x2 x3 x4 x5 x6 x7 x8 }; last iApply H.
(* this is wrong *)
Tactic Notation "iApply" open_constr (lem) constr(Hs) :=
iPoseProof lem Hs as (fun H => first
[iExact H
|eapply tac_apply with _ H _ _ _;
[env_cbv; reflexivity || fail 1 "iApply:" lem "not found"
|apply _ || fail 1 "iApply: cannot apply" lem|]]).
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) "}" constr(Hs) :=
iSpecialize H { x1 }; last iApply H Hs.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) "}"
constr(Hs) :=
iSpecialize H { x1 x2 }; last iApply H Hs.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 }; last iApply H Hs.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 }; last iApply H Hs.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 x5 }; last iApply H Hs.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) "}"
constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 x5 x6 }; last iApply H Hs.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6)
open_constr(x7) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 x5 x6 x7 }; last iApply H Hs.
Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2)
open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6)
open_constr(x7) open_constr(x8) "}" constr(Hs) :=
iSpecialize H { x1 x2 x3 x4 x5 x6 x7 x8 }; last iApply H Hs.
(** * Revert *)
Tactic Notation "iRevert" "★" := eapply tac_revert_spatial; env_cbv.
let A := type of x in
lazymatch type of A with
| Prop => revert x; apply tac_pure_revert
end || fail "iRevert: cannot revert" x.
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
Tactic Notation "iImplRevert" constr(H) :=
eapply tac_revert with _ H _ _; (* (i:=H) *)
[env_cbv; reflexivity || fail "iRevert:" H "not found"
|env_cbv].
Tactic Notation "iRevert" constr(Hs) :=
let rec go H2s :=
match H2s with [] => idtac | ?H2 :: ?H2s => go H2s; iImplRevert H2 end in
let Hs := words Hs in go Hs.
Tactic Notation "iRevert" "{" ident(x1) "}" :=
iForallRevert x1.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) "}" :=
iForallRevert x2; iRevert { x1 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) "}" :=
iForallRevert x3; iRevert { x1 x2 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4) "}" :=
iForallRevert x4; iRevert { x1 x2 x3 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) "}" :=
iForallRevert x5; iRevert { x1 x2 x3 x4 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) "}" :=
iForallRevert x6; iRevert { x1 x2 x3 x4 x5 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) "}" :=
iForallRevert x7; iRevert { x1 x2 x3 x4 x5 x6 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ident(x8) "}" :=
iForallRevert x8; iRevert { x1 x2 x3 x4 x5 x6 x7 }.
Tactic Notation "iRevert" "{" ident(x1) "}" constr(Hs) :=
iRevert Hs; iRevert { x1 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) "}" constr(Hs) :=
iRevert Hs; iRevert { x1 x2 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) "}" constr(Hs) :=
iRevert Hs; iRevert { x1 x2 x3 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4) "}"
constr(Hs) :=
iRevert Hs; iRevert { x1 x2 x3 x4 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) "}" constr(Hs) :=
iRevert Hs; iRevert { x1 x2 x3 x4 x5 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) "}" constr(Hs) :=
iRevert Hs; iRevert { x1 x2 x3 x4 x5 x6 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) "}" constr(Hs) :=
iRevert Hs; iRevert { x1 x2 x3 x4 x5 x6 x7 }.
Tactic Notation "iRevert" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ident(x8) "}" constr(Hs) :=
iRevert Hs; iRevert { x1 x2 x3 x4 x5 x6 x7 x8 }.
(** * Disjunction *)
Tactic Notation "iLeft" :=
eapply tac_or_l;
[let P := match goal with |- OrSplit ?P _ _ => P end in
apply _ || fail "iLeft:" P "not a disjunction"|].
Tactic Notation "iRight" :=
eapply tac_or_r;
[let P := match goal with |- OrSplit ?P _ _ => P end in
apply _ || fail "iRight:" P "not a disjunction"|].
Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
[env_cbv; reflexivity || fail "iOrDestruct:" H "not found"
|let P := match goal with |- OrDestruct ?P _ _ => P end in
apply _ || fail "iOrDestruct:" H ":" P "not a disjunction"
|env_cbv; reflexivity || fail "iOrDestruct:" H1 "not fresh"
|env_cbv; reflexivity || fail "iOrDestruct:" H2 "not fresh"| |].
(** * Conjunction and separating conjunction *)
Tactic Notation "iSplit" :=
eapply tac_and_split;
[let P := match goal with |- AndSplit ?P _ _ => P end in
apply _ || fail "iSplit:" P "not a conjunction"| |].
Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in
eapply tac_sep_split with _ _ false Hs _ _; (* (js:=Hs) *)
[let P := match goal with |- SepSplit ?P _ _ => P end in
apply _ || fail "iSplitL:" P "not a separating conjunction"
|env_cbv; reflexivity || fail "iSplitL: hypotheses" Hs "not found"| |].
Tactic Notation "iSplitR" constr(Hs) :=
let Hs := words Hs in
eapply tac_sep_split with _ _ true Hs _ _; (* (js:=Hs) *)
[let P := match goal with |- SepSplit ?P _ _ => P end in
apply _ || fail "iSplitR:" P "not a separating conjunction"
|env_cbv; reflexivity || fail "iSplitR: hypotheses" Hs "not found"| |].
Tactic Notation "iSplitL" := iSplitR "".
Tactic Notation "iSplitR" := iSplitL "".
Tactic Notation "iSepDestruct" constr(H) "as" constr(H1) constr(H2) :=
eapply tac_sep_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
[env_cbv; reflexivity || fail "iSepDestruct:" H "not found"
|let P := match goal with |- SepDestruct _ ?P _ _ => P end in
apply _ || fail "iSepDestruct:" H ":" P "not separating destructable"
|env_cbv; reflexivity || fail "iSepDestruct:" H1 "or" H2 " not fresh"|].
Tactic Notation "iFrame" constr(Hs) :=
let rec go Hs :=
match Hs with
| [] => idtac
| ?H :: ?Hs =>
eapply tac_frame with _ H _ _ _;
[env_cbv; reflexivity || fail "iFrame:" H "not found"
|let R := match goal with |- Frame ?R _ _ => R end in
apply _ || fail "iFrame: cannot frame" R
|lazy iota beta; go Hs]
end
in let Hs := words Hs in go Hs.
Tactic Notation "iCombine" constr(H1) constr(H2) "as" constr(H) :=
eapply tac_combine with _ _ _ H1 _ _ H2 _ _ H _;
[env_cbv; reflexivity || fail "iCombine:" H1 "not found"
|env_cbv; reflexivity || fail "iCombine:" H2 "not found"
|let P1 := match goal with |- SepSplit _ ?P1 _ => P1 end in
let P2 := match goal with |- SepSplit _ _ ?P2 => P2 end in
apply _ || fail "iCombine: cannot combine" H1 ":" P1 "and" H2 ":" P2
|env_cbv; reflexivity || fail "iCombine:" H "not fresh"|].
(** * Existential *)
Tactic Notation "iExists" open_constr(x1) :=
eapply tac_exist with _ x1 ;
[let P := match goal with |- ExistSplit ?P _ => P end in
apply _ || fail "iExists:" P "not an existential"
|cbv beta].
Tactic Notation "iExists" open_constr(x1) "," open_constr(x2) :=
iExists x1; iExists x2.
Tactic Notation "iExists" open_constr(x1) "," open_constr(x2) ","
open_constr(x3) :=
iExists x1; iExists x2, x3.
Tactic Notation "iExists" open_constr(x1) "," open_constr(x2) ","
open_constr(x3) "," open_constr(x4) :=
iExists x1; iExists x2, x3, x4.
Tactic Notation "iExists" open_constr(x1) "," open_constr(x2) ","
open_constr(x3) "," open_constr(x4) "," open_constr(x5) :=
iExists x1; iExists x2, x3, x4, x5.
Tactic Notation "iExists" open_constr(x1) "," open_constr(x2) ","
open_constr(x3) "," open_constr(x4) "," open_constr(x5) ","
open_constr(x6) :=
iExists x1; iExists x2, x3, x4, x5, x6.
Tactic Notation "iExists" open_constr(x1) "," open_constr(x2) ","
open_constr(x3) "," open_constr(x4) "," open_constr(x5) ","
open_constr(x6) "," open_constr(x7) :=
iExists x1; iExists x2, x3, x4, x5, x6, x7.
Tactic Notation "iExists" open_constr(x1) "," open_constr(x2) ","
open_constr(x3) "," open_constr(x4) "," open_constr(x5) ","
open_constr(x6) "," open_constr(x7) "," open_constr(x8) :=
iExists x1; iExists x2, x3, x4, x5, x6, x7, x8.
Tactic Notation "iExistDestruct" constr(H) "as" ident(x) constr(Hx) :=
eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *)
[env_cbv; reflexivity || fail "iExistDestruct:" H "not found"
|let P := match goal with |- ExistDestruct ?P _ => P end in
apply _ || fail "iExistDestruct:" H ":" P "not an existential"|];
intros x; eexists; split;
[env_cbv; reflexivity || fail "iExistDestruct:" Hx "not fresh"|].
(** * Destruct tactic *)
Tactic Notation "iDestructHyp" constr(H) "as" constr(pat) :=
let rec go Hz pat :=
lazymatch pat with
| IAnom => idtac
| IAnomPure => iPure Hz
| IClear => iClear Hz
| IName ?y => iRename Hz into y
| IPersistent ?pat => iPersistent Hz; go Hz pat
| IList [[]] => iContradiction Hz
| IList [[?pat1; ?pat2]] =>
let Hy := iFresh in iSepDestruct Hz as Hz Hy; go Hz pat1; go Hy pat2
| IList [[?pat1];[?pat2]] => iOrDestruct Hz as Hz Hz; [go Hz pat1|go Hz pat2]
| _ => fail "iDestruct:" pat "invalid"
end
in let pat := intro_pat.parse_one pat in go H pat.
Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) "}"
constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as @ pat.
Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) "}" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as { x2 } pat.
Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) "}" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 } pat.
Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) "}"
constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 } pat.
Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) "}" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 x5 } pat.
Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) "}" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 x5 x6 } pat.
Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) "}"
constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 x5 x6 x7 } pat.
Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
simple_intropattern(x8) "}" constr(pat) :=
iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 x5 x6 x7 x8 } pat.
Tactic Notation "iDestruct" open_constr(H) "as" constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as pat).
Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) "}"
constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as { x1 } pat).
Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) "}" constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as { x1 x2 } pat).
Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) "}" constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 } pat).
Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) "}"
constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 } pat).
Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) "}" constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 } pat).
Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) "}" constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 } pat).
Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) "}"
constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 } pat).
Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
simple_intropattern(x8) "}" constr(pat) :=
iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs; last iDestructHyp H as pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{"
simple_intropattern(x1) "}" constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs;
last iDestructHyp H as { x1 } pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{"
simple_intropattern(x1) simple_intropattern(x2) "}" constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs;
last iDestructHyp H as { x1 x2 } pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{"
simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) "}"
constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs;
last iDestructHyp H as { x1 x2 x3 } pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{"
simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
simple_intropattern(x4) "}" constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs;
last iDestructHyp H as { x1 x2 x3 x4 } pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{"
simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
simple_intropattern(x4) simple_intropattern(x5) "}" constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs;
last iDestructHyp H as { x1 x2 x3 x4 x5 } pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{"
simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) "}"
constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs;
last iDestructHyp H as { x1 x2 x3 x4 x5 x6 } pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{"
simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6)
simple_intropattern(x7) "}" constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs;
last iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 } pat).
Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{"
simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6)
simple_intropattern(x7) simple_intropattern(x8) "}" constr(pat) :=
iPoseProof lem as (fun H => iSpecialize H Hs;
last iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat).
Tactic Notation "iDestruct" open_constr(H) "as" "%" simple_intropattern(pat) :=
let Htmp := iFresh in iDestruct H as Htmp; iPure Htmp as pat.
Tactic Notation "iDestruct" open_constr(H) constr(Hs)
"as" "%" simple_intropattern(pat) :=
let Htmp := iFresh in iDestruct H Hs as Htmp; iPure Htmp as pat.
(** * Always *)
Tactic Notation "iAlways":=
apply tac_always_intro;
[reflexivity || fail "iAlways: spatial context non-empty"|].
(** * Introduction tactic *)
Tactic Notation "iIntros" constr(pat) :=
let rec go pats :=
lazymatch pats with
| [] => idtac
| ISimpl :: ?pats => simpl; go pats
| IAlways :: ?pats => iAlways; go pats
| IPersistent (IName ?H) :: ?pats => iIntro #H; go pats
| IName ?H :: ?pats => iIntro H; go pats
| IPersistent IAnom :: ?pats => let H := iFresh in iIntro #H; go pats
| IAnom :: ?pats => let H := iFresh in iIntro H; go pats
| IAnomPure :: ?pats => iIntro {?}; go pats
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
| IPersistent ?pat :: ?pats =>
let H := iFresh in iIntro #H; iDestructHyp H as pat; go pats
| ?pat :: ?pats =>
let H := iFresh in iIntro H; iDestructHyp H as pat; go pats
| _ => fail "iIntro: failed with" pats
end
in let pats := intro_pat.parse pat in try iProof; go pats.
Tactic Notation "iIntros" "{" simple_intropattern(x1) "}" :=
try iProof; iIntro { x1 }.
Tactic Notation "iIntros" "{" simple_intropattern(x1)
simple_intropattern(x2) "}" :=
iIntros { x1 }; iIntro { x2 }.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) "}" :=
iIntros { x1 x2 }; iIntro { x3 }.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) "}" :=
iIntros { x1 x2 x3 }; iIntro { x4 }.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) "}" :=
iIntros { x1 x2 x3 x4 }; iIntro { x5 }.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) "}" :=
iIntros { x1 x2 x3 x4 x5 }; iIntro { x6 }.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) simple_intropattern(x7) "}" :=
iIntros { x1 x2 x3 x4 x5 x6 }; iIntro { x7 }.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8) "}" :=
iIntros { x1 x2 x3 x4 x5 x6 x7 }; iIntro { x8 }.
Tactic Notation "iIntros" "{" simple_intropattern(x1) "}" constr(p) :=
iIntros { x1 }; iIntros p.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
"}" constr(p) :=
iIntros { x1 x2 }; iIntros p.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) "}" constr(p) :=
iIntros { x1 x2 x3 }; iIntros p.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) "}" constr(p) :=
iIntros { x1 x2 x3 x4 }; iIntros p.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
"}" constr(p) :=
iIntros { x1 x2 x3 x4 x5 }; iIntros p.
Tactic Notation "iIntros" "{"simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) "}" constr(p) :=
iIntros { x1 x2 x3 x4 x5 x6 }; iIntros p.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) simple_intropattern(x7) "}" constr(p) :=
iIntros { x1 x2 x3 x4 x5 x6 x7 }; iIntros p.
Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2)
simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
"}" constr(p) :=
iIntros { x1 x2 x3 x4 x5 x6 x7 x8 }; iIntros p.
(** * Later *)
Tactic Notation "iNext":=
eapply tac_next;
[apply _
|let P := match goal with |- upred_tactics.StripLaterL ?P _ => P end in
apply _ || fail "iNext:" P "does not contain laters"|].
(* This is pretty ugly, but without Ltac support for manipulating lists of
idents I do not know how to do this better. *)
Ltac iLöbCore IH tac_before tac_after :=
match goal with
| |- of_envs ?Δ ⊢ _ =>
let Hs := constr:(rev (env_dom_list (env_spatial Δ))) in
iRevert ★; tac_before;
eapply tac_löb with _ IH;
[reflexivity
|env_cbv; reflexivity || fail "iLöb:" IH "not fresh"|];
tac_after; iIntros Hs
end.
Tactic Notation "iLöb" "as" constr (IH) := iLöbCore IH idtac idtac.
Tactic Notation "iLöb" "{" ident(x1) "}" "as" constr (IH) :=
iLöbCore IH ltac:(iRevert { x1 }) ltac:(iIntros { x1 }).
Tactic Notation "iLöb" "{" ident(x1) ident(x2) "}" "as" constr (IH) :=
iLöbCore IH ltac:(iRevert { x1 x2 }) ltac:(iIntros { x1 x2 }).
Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) "}" "as" constr (IH) :=
iLöbCore IH ltac:(iRevert { x1 x2 x3 }) ltac:(iIntros { x1 x2 x3 }).
Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4) "}" "as"
constr (IH):=
iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 }) ltac:(iIntros { x1 x2 x3 x4 }).
Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) "}" "as" constr (IH) :=
iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 x5 })
ltac:(iIntros { x1 x2 x3 x4 x5 }).
Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) "}" "as" constr (IH) :=
iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 })
ltac:(iIntros { x1 x2 x3 x4 x5 x6 }).
Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) "}" "as" constr (IH) :=
iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 x7 })
ltac:(iIntros { x1 x2 x3 x4 x5 x6 x7 }).
Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4)
ident(x5) ident(x6) ident(x7) ident(x8) "}" "as" constr (IH) :=
iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 x7 x8 })
ltac:(iIntros { x1 x2 x3 x4 x5 x6 x7 x8 }).
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
(** * Assert *)
Tactic Notation "iAssert" constr(Q) "as" constr(pat) "with" constr(Hs) :=
let H := iFresh in
let Hs := spec_pat.parse_one Hs in
lazymatch Hs with
| SSplit ?lr ?Hs =>
eapply tac_assert with _ _ _ lr Hs H Q; (* (js:=Hs) (j:=H) (P:=Q) *)
[env_cbv; reflexivity || fail "iAssert:" Hs "not found"
|env_cbv; reflexivity|
|iDestructHyp H as pat]
| SPersistent =>
eapply tac_assert_persistent with _ H Q; (* (j:=H) (P:=Q) *)
[apply _ || fail "iAssert:" Q "not persistent"
|env_cbv; reflexivity|
|iDestructHyp H as pat]
| ?pat => fail "iAssert: invalid pattern" pat
end.
Tactic Notation "iAssert" constr(Q) "as" constr(pat) :=
iAssert Q as pat with "[]".
(** * Rewrite *)
Ltac iRewriteFindPred :=
match goal with
| |- _ ⊣⊢ ?Φ ?x =>
generalize x;
match goal with |- (∀ y, @?Ψ y ⊣⊢ _) => unify Φ Ψ; reflexivity end
end.
Tactic Notation "iRewriteCore" constr(lr) constr(Heq) :=
eapply (tac_rewrite _ Heq _ _ lr);
[env_cbv; reflexivity || fail "iRewrite:" Heq "not found"
|let P := match goal with |- ?P ⊢ _ => P end in
reflexivity || fail "iRewrite:" Heq ":" P "not an equality"
|iRewriteFindPred
|intros ??? ->; reflexivity|lazy beta].
Tactic Notation "iRewrite" constr(Heq) := iRewriteCore false Heq.
Tactic Notation "iRewrite" "-" constr(Heq) := iRewriteCore true Heq.
Tactic Notation "iRewriteCore" constr(lr) constr(Heq) "in" constr(H) :=
eapply (tac_rewrite_in _ Heq _ _ H _ _ lr);
[env_cbv; reflexivity || fail "iRewrite:" Heq "not found"
|env_cbv; reflexivity || fail "iRewrite:" H "not found"
|let P := match goal with |- ?P ⊢ _ => P end in
reflexivity || fail "iRewrite:" Heq ":" P "not an equality"
|iRewriteFindPred
|intros ??? ->; reflexivity
|env_cbv; reflexivity|lazy beta].
Tactic Notation "iRewrite" constr(Heq) "in" constr(H) :=
iRewriteCore false Heq in H.
Tactic Notation "iRewrite" "-" constr(Heq) "in" constr(H) :=
iRewriteCore true Heq in H.
(* Make sure that by and done solve trivial things in proof mode *)
Hint Extern 0 (of_envs _ ⊢ _) => by apply tac_pure_intro.
Hint Extern 0 (of_envs _ ⊢ _) => iAssumption.