Forked from
Iris / Iris
1843 commits behind the upstream repository.
primitive_laws.v 19.81 KiB
(** This file proves the basic laws of the HeapLang program logic by applying
the Iris lifting lemmas. *)
From iris.proofmode Require Import tactics.
From iris.bi.lib Require Import fractional.
From iris.base_logic.lib Require Export gen_heap proph_map gen_inv_heap.
From iris.program_logic Require Export weakestpre total_weakestpre.
From iris.program_logic Require Import ectx_lifting total_ectx_lifting.
From iris.heap_lang Require Export class_instances.
From iris.heap_lang Require Import tactics notation.
From iris.prelude Require Import options.
Class heapG Σ := HeapG {
heapG_invG : invG Σ;
heapG_gen_heapG :> gen_heapG loc (option val) Σ;
heapG_inv_heapG :> inv_heapG loc (option val) Σ;
heapG_proph_mapG :> proph_mapG proph_id (val * val) Σ;
}.
Global Instance heapG_irisG `{!heapG Σ} : irisG heap_lang Σ := {
iris_invG := heapG_invG;
state_interp σ κs _ :=
(gen_heap_interp σ.(heap) ∗ proph_map_interp κs σ.(used_proph_id))%I;
fork_post _ := True%I;
}.
(** Since we use an [option val] instance of [gen_heap], we need to overwrite
the notations. That also helps for scopes and coercions. *)
(** FIXME: Refactor these notations using custom entries once Coq bug #13654
has been fixed. *)
Notation "l ↦{ dq } v" := (mapsto (L:=loc) (V:=option val) l dq (Some v%V))
(at level 20, format "l ↦{ dq } v") : bi_scope.
Notation "l ↦□ v" := (mapsto (L:=loc) (V:=option val) l DfracDiscarded (Some v%V))
(at level 20, format "l ↦□ v") : bi_scope.
Notation "l ↦{# q } v" := (mapsto (L:=loc) (V:=option val) l (DfracOwn q) (Some v%V))
(at level 20, format "l ↦{# q } v") : bi_scope.
Notation "l ↦ v" := (mapsto (L:=loc) (V:=option val) l (DfracOwn 1) (Some v%V))
(at level 20, format "l ↦ v") : bi_scope.
(** Same for [gen_inv_heap], except that these are higher-order notations so to
make setoid rewriting in the predicate [I] work we need actual definitions
here. *)
Section definitions.
Context `{!heapG Σ}.
Definition inv_mapsto_own (l : loc) (v : val) (I : val → Prop) : iProp Σ :=
inv_mapsto_own l (Some v) (from_option I False).
Definition inv_mapsto (l : loc) (I : val → Prop) : iProp Σ :=
inv_mapsto l (from_option I False).
End definitions.
Global Instance: Params (@inv_mapsto_own) 4 := {}.
Global Instance: Params (@inv_mapsto) 3 := {}.
Notation inv_heap_inv := (inv_heap_inv loc (option val)).
Notation "l '↦_' I □" := (inv_mapsto l I%stdpp%type)
(at level 20, I at level 9, format "l '↦_' I '□'") : bi_scope.
Notation "l ↦_ I v" := (inv_mapsto_own l v I%stdpp%type)
(at level 20, I at level 9, format "l ↦_ I v") : bi_scope.
Section lifting.
Context `{!heapG Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ Ψ : val → iProp Σ.
Implicit Types efs : list expr.
Implicit Types σ : state.
Implicit Types v : val.
Implicit Types l : loc.
(** Recursive functions: we do not use this lemmas as it is easier to use Löb
induction directly, but this demonstrates that we can state the expected
reasoning principle for recursive functions, without any visible ▷. *)
Lemma wp_rec_löb s E f x e Φ Ψ :
□ ( □ (∀ v, Ψ v -∗ WP (rec: f x := e)%V v @ s; E {{ Φ }}) -∗
∀ v, Ψ v -∗ WP (subst' x v (subst' f (rec: f x := e) e)) @ s; E {{ Φ }}) -∗
∀ v, Ψ v -∗ WP (rec: f x := e)%V v @ s; E {{ Φ }}.
Proof.
iIntros "#Hrec". iLöb as "IH". iIntros (v) "HΨ".
iApply lifting.wp_pure_step_later; first done.
iNext. iApply ("Hrec" with "[] HΨ"). iIntros "!>" (w) "HΨ".
iApply ("IH" with "HΨ").
Qed.
(** Fork: Not using Texan triples to avoid some unnecessary [True] *)
Lemma wp_fork s E e Φ :
▷ WP e @ s; ⊤ {{ _, True }} -∗ ▷ Φ (LitV LitUnit) -∗ WP Fork e @ s; E {{ Φ }}.
Proof.
iIntros "He HΦ". iApply wp_lift_atomic_head_step; [done|].
iIntros (σ1 κ κs n) "Hσ !>"; iSplit; first by eauto with head_step.
iIntros "!>" (v2 σ2 efs Hstep); inv_head_step. by iFrame.
Qed.
Lemma twp_fork s E e Φ :
WP e @ s; ⊤ [{ _, True }] -∗ Φ (LitV LitUnit) -∗ WP Fork e @ s; E [{ Φ }].
Proof.
iIntros "He HΦ". iApply twp_lift_atomic_head_step; [done|].
iIntros (σ1 κs n) "Hσ !>"; iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step. by iFrame.
Qed.
(** Heap *)
(** We need to adjust the [gen_heap] and [gen_inv_heap] lemmas because of our
value type being [option val]. *)
Lemma mapsto_valid l dq v : l ↦{dq} v -∗ ⌜✓ dq⌝.
Proof. apply mapsto_valid. Qed.
Lemma mapsto_valid_2 l dq1 dq2 v1 v2 :
l ↦{dq1} v1 -∗ l ↦{dq2} v2 -∗ ⌜✓ (dq1 ⋅ dq2) ∧ v1 = v2⌝.
Proof.
iIntros "H1 H2". iDestruct (mapsto_valid_2 with "H1 H2") as %[? [=?]]. done.
Qed.
Lemma mapsto_agree l dq1 dq2 v1 v2 : l ↦{dq1} v1 -∗ l ↦{dq2} v2 -∗ ⌜v1 = v2⌝.
Proof. iIntros "H1 H2". iDestruct (mapsto_agree with "H1 H2") as %[=?]. done. Qed.
Lemma mapsto_combine l dq1 dq2 v1 v2 :
l ↦{dq1} v1 -∗ l ↦{dq2} v2 -∗ l ↦{dq1 ⋅ dq2} v1 ∗ ⌜v1 = v2⌝.
Proof.
iIntros "Hl1 Hl2". iDestruct (mapsto_combine with "Hl1 Hl2") as "[$ Heq]".
by iDestruct "Heq" as %[= ->].
Qed.
Lemma mapsto_frac_ne l1 l2 dq1 dq2 v1 v2 :
¬ ✓(dq1 ⋅ dq2) → l1 ↦{dq1} v1 -∗ l2 ↦{dq2} v2 -∗ ⌜l1 ≠ l2⌝.
Proof. apply mapsto_frac_ne. Qed.
Lemma mapsto_ne l1 l2 dq2 v1 v2 : l1 ↦ v1 -∗ l2 ↦{dq2} v2 -∗ ⌜l1 ≠ l2⌝.
Proof. apply mapsto_ne. Qed.
Lemma mapsto_persist l dq v : l ↦{dq} v ==∗ l ↦□ v.
Proof. apply mapsto_persist. Qed.
Global Instance inv_mapsto_own_proper l v :
Proper (pointwise_relation _ iff ==> (≡)) (inv_mapsto_own l v).
Proof.
intros I1 I2 HI. rewrite /inv_mapsto_own. f_equiv=>-[w|]; last done.
simpl. apply HI.
Qed.
Global Instance inv_mapsto_proper l :
Proper (pointwise_relation _ iff ==> (≡)) (inv_mapsto l).
Proof.
intros I1 I2 HI. rewrite /inv_mapsto. f_equiv=>-[w|]; last done.
simpl. apply HI.
Qed.
Lemma make_inv_mapsto l v (I : val → Prop) E :
↑inv_heapN ⊆ E →
I v →
inv_heap_inv -∗ l ↦ v ={E}=∗ l ↦_I v.
Proof. iIntros (??) "#HI Hl". iApply make_inv_mapsto; done. Qed.
Lemma inv_mapsto_own_inv l v I : l ↦_I v -∗ l ↦_I □.
Proof. apply inv_mapsto_own_inv. Qed.
Lemma inv_mapsto_own_acc_strong E :
↑inv_heapN ⊆ E →
inv_heap_inv ={E, E ∖ ↑inv_heapN}=∗ ∀ l v I, l ↦_I v -∗
(⌜I v⌝ ∗ l ↦ v ∗ (∀ w, ⌜I w ⌝ -∗ l ↦ w ==∗
inv_mapsto_own l w I ∗ |={E ∖ ↑inv_heapN, E}=> True)).
Proof.
iIntros (?) "#Hinv".
iMod (inv_mapsto_own_acc_strong with "Hinv") as "Hacc"; first done.
iIntros "!>" (l v I) "Hl". iDestruct ("Hacc" with "Hl") as "(% & Hl & Hclose)".
iFrame "%∗". iIntros (w) "% Hl". iApply "Hclose"; done.
Qed.
Lemma inv_mapsto_own_acc E l v I:
↑inv_heapN ⊆ E →
inv_heap_inv -∗ l ↦_I v ={E, E ∖ ↑inv_heapN}=∗
(⌜I v⌝ ∗ l ↦ v ∗ (∀ w, ⌜I w ⌝ -∗ l ↦ w ={E ∖ ↑inv_heapN, E}=∗ l ↦_I w)).
Proof.
iIntros (?) "#Hinv Hl".
iMod (inv_mapsto_own_acc with "Hinv Hl") as "(% & Hl & Hclose)"; first done.
iFrame "%∗". iIntros "!>" (w) "% Hl". iApply "Hclose"; done.
Qed.
Lemma inv_mapsto_acc l I E :
↑inv_heapN ⊆ E →
inv_heap_inv -∗ l ↦_I □ ={E, E ∖ ↑inv_heapN}=∗
∃ v, ⌜I v⌝ ∗ l ↦ v ∗ (l ↦ v ={E ∖ ↑inv_heapN, E}=∗ ⌜True⌝).
Proof.
iIntros (?) "#Hinv Hl".
iMod (inv_mapsto_acc with "Hinv Hl") as ([v|]) "(% & Hl & Hclose)"; [done| |done].
iIntros "!>". iExists (v). iFrame "%∗".
Qed.
(** The usable rules for [allocN] stated in terms of the [array] proposition
are derived in te file [array]. *)
Lemma heap_array_to_seq_meta l vs (n : nat) :
length vs = n →
([∗ map] l' ↦ _ ∈ heap_array l vs, meta_token l' ⊤) -∗
[∗ list] i ∈ seq 0 n, meta_token (l +ₗ (i : nat)) ⊤.
Proof.
iIntros (<-) "Hvs". iInduction vs as [|v vs] "IH" forall (l)=> //=.
rewrite big_opM_union; last first.
{ apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _].
intros (j&w&?&Hjl&?&?)%heap_array_lookup.
rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl. simplify_eq; lia. }
rewrite loc_add_0 -fmap_S_seq big_sepL_fmap.
setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l.
setoid_rewrite <-loc_add_assoc.
rewrite big_opM_singleton; iDestruct "Hvs" as "[$ Hvs]". by iApply "IH".
Qed.
Lemma heap_array_to_seq_mapsto l v (n : nat) :
([∗ map] l' ↦ ov ∈ heap_array l (replicate n v), gen_heap.mapsto l' (DfracOwn 1) ov) -∗
[∗ list] i ∈ seq 0 n, (l +ₗ (i : nat)) ↦ v.
Proof.
iIntros "Hvs". iInduction n as [|n] "IH" forall (l); simpl.
{ done. }
rewrite big_opM_union; last first.
{ apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _].
intros (j&w&?&Hjl&_)%heap_array_lookup.
rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl. simplify_eq; lia. }
rewrite loc_add_0 -fmap_S_seq big_sepL_fmap.
setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l.
setoid_rewrite <-loc_add_assoc.
rewrite big_opM_singleton; iDestruct "Hvs" as "[$ Hvs]". by iApply "IH".
Qed.
Lemma twp_allocN_seq s E v n :
(0 < n)%Z →
[[{ True }]] AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
[[{ l, RET LitV (LitLoc l); [∗ list] i ∈ seq 0 (Z.to_nat n),
(l +ₗ (i : nat)) ↦ v ∗ meta_token (l +ₗ (i : nat)) ⊤ }]].
Proof.
iIntros (Hn Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 κs k) "[Hσ Hκs] !>"; iSplit; first by destruct n; auto with lia head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iMod (gen_heap_alloc_big _ (heap_array _ (replicate (Z.to_nat n) v)) with "Hσ")
as "(Hσ & Hl & Hm)".
{ apply heap_array_map_disjoint.
rewrite replicate_length Z2Nat.id; auto with lia. }
iModIntro; do 2 (iSplit; first done). iFrame "Hσ Hκs". iApply "HΦ".
iApply big_sepL_sep. iSplitL "Hl".
- by iApply heap_array_to_seq_mapsto.
- iApply (heap_array_to_seq_meta with "Hm"). by rewrite replicate_length.
Qed.
Lemma wp_allocN_seq s E v n :
(0 < n)%Z →
{{{ True }}} AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
{{{ l, RET LitV (LitLoc l); [∗ list] i ∈ seq 0 (Z.to_nat n),
(l +ₗ (i : nat)) ↦ v ∗ meta_token (l +ₗ (i : nat)) ⊤ }}}.
Proof.
iIntros (Hn Φ) "_ HΦ". iApply (twp_wp_step with "HΦ").
iApply twp_allocN_seq; [by auto..|]; iIntros (l) "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_alloc s E v :
[[{ True }]] Alloc (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l ↦ v ∗ meta_token l ⊤ }]].
Proof.
iIntros (Φ) "_ HΦ". iApply twp_allocN_seq; [auto with lia..|].
iIntros (l) "/= (? & _)". rewrite loc_add_0. iApply "HΦ"; iFrame.
Qed.
Lemma wp_alloc s E v :
{{{ True }}} Alloc (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l ↦ v ∗ meta_token l ⊤ }}}.
Proof.
iIntros (Φ) "_ HΦ". iApply (twp_wp_step with "HΦ").
iApply twp_alloc; [by auto..|]; iIntros (l) "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_free s E l v :
[[{ l ↦ v }]] Free (Val $ LitV $ LitLoc l) @ s; E
[[{ RET LitV LitUnit; True }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iModIntro. iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
Lemma wp_free s E l v :
{{{ ▷ l ↦ v }}} Free (Val $ LitV (LitLoc l)) @ s; E
{{{ RET LitV LitUnit; True }}}.
Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_free with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_load s E l dq v :
[[{ l ↦{dq} v }]] Load (Val $ LitV $ LitLoc l) @ s; E [[{ RET v; l ↦{dq} v }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
Lemma wp_load s E l dq v :
{{{ ▷ l ↦{dq} v }}} Load (Val $ LitV $ LitLoc l) @ s; E {{{ RET v; l ↦{dq} v }}}.
Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_load with "H"). iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_store s E l v' v :
[[{ l ↦ v' }]] Store (Val $ LitV $ LitLoc l) (Val v) @ s; E
[[{ RET LitV LitUnit; l ↦ v }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iModIntro. iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
Lemma wp_store s E l v' v :
{{{ ▷ l ↦ v' }}} Store (Val $ LitV (LitLoc l)) (Val v) @ s; E
{{{ RET LitV LitUnit; l ↦ v }}}.
Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_store with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_cmpxchg_fail s E l dq v' v1 v2 :
v' ≠ v1 → vals_compare_safe v' v1 →
[[{ l ↦{dq} v' }]] CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
[[{ RET PairV v' (LitV $ LitBool false); l ↦{dq} v' }]].
Proof.
iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2' σ2 efs Hstep); inv_head_step.
rewrite bool_decide_false //.
iModIntro; iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
Lemma wp_cmpxchg_fail s E l dq v' v1 v2 :
v' ≠ v1 → vals_compare_safe v' v1 →
{{{ ▷ l ↦{dq} v' }}} CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
{{{ RET PairV v' (LitV $ LitBool false); l ↦{dq} v' }}}.
Proof.
iIntros (?? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_cmpxchg_fail with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_cmpxchg_suc s E l v1 v2 v' :
v' = v1 → vals_compare_safe v' v1 →
[[{ l ↦ v' }]] CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
[[{ RET PairV v' (LitV $ LitBool true); l ↦ v2 }]].
Proof.
iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2' σ2 efs Hstep); inv_head_step.
rewrite bool_decide_true //.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iModIntro. iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
Lemma wp_cmpxchg_suc s E l v1 v2 v' :
v' = v1 → vals_compare_safe v' v1 →
{{{ ▷ l ↦ v' }}} CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
{{{ RET PairV v' (LitV $ LitBool true); l ↦ v2 }}}.
Proof.
iIntros (?? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_cmpxchg_suc with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_faa s E l i1 i2 :
[[{ l ↦ LitV (LitInt i1) }]] FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
[[{ RET LitV (LitInt i1); l ↦ LitV (LitInt (i1 + i2)) }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ e2 σ2 efs Hstep); inv_head_step.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iModIntro. do 2 (iSplit; first done). iFrame. by iApply "HΦ".
Qed.
Lemma wp_faa s E l i1 i2 :
{{{ ▷ l ↦ LitV (LitInt i1) }}} FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
{{{ RET LitV (LitInt i1); l ↦ LitV (LitInt (i1 + i2)) }}}.
Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_faa with "H"); [by auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma wp_new_proph s E :
{{{ True }}}
NewProph @ s; E
{{{ pvs p, RET (LitV (LitProphecy p)); proph p pvs }}}.
Proof.
iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 κ κs n) "[Hσ HR] !>". iSplit; first by eauto with head_step.
iIntros "!>" (v2 σ2 efs Hstep). inv_head_step.
rename select proph_id into p.
iMod (proph_map_new_proph p with "HR") as "[HR Hp]"; first done.
iModIntro; iSplit; first done. iFrame. by iApply "HΦ".
Qed.
(* In the following, strong atomicity is required due to the fact that [e] must
be able to make a head step for [Resolve e _ _] not to be (head) stuck. *)
Lemma resolve_reducible e σ (p : proph_id) v :
Atomic StronglyAtomic e → reducible e σ →
reducible (Resolve e (Val (LitV (LitProphecy p))) (Val v)) σ.
Proof.
intros A (κ & e' & σ' & efs & H).
exists (κ ++ [(p, (default v (to_val e'), v))]), e', σ', efs.
eapply (Ectx_step []); try done.
assert (∃w, Val w = e') as [w <-].
{ unfold Atomic in A. apply (A σ e' κ σ' efs) in H. unfold is_Some in H.
destruct H as [w H]. exists w. simpl in H. by apply (of_to_val _ _ H). }
simpl. constructor. by apply prim_step_to_val_is_head_step.
Qed.
Lemma step_resolve e vp vt σ1 κ e2 σ2 efs :
Atomic StronglyAtomic e →
prim_step (Resolve e (Val vp) (Val vt)) σ1 κ e2 σ2 efs →
head_step (Resolve e (Val vp) (Val vt)) σ1 κ e2 σ2 efs.
Proof.
intros A [Ks e1' e2' Hfill -> step]. simpl in *.
induction Ks as [|K Ks _] using rev_ind.
+ simpl in *. subst. inv_head_step. by constructor.
+ rewrite fill_app /= in Hfill. destruct K; inversion Hfill; subst; clear Hfill.
- rename select ectx_item into Ki.
assert (fill_item Ki (fill Ks e1') = fill (Ks ++ [Ki]) e1') as Eq1;
first by rewrite fill_app.
assert (fill_item Ki (fill Ks e2') = fill (Ks ++ [Ki]) e2') as Eq2;
first by rewrite fill_app.
rewrite fill_app /=. rewrite Eq1 in A.
assert (is_Some (to_val (fill (Ks ++ [Ki]) e2'))) as H.
{ apply (A σ1 _ κ σ2 efs). eapply (Ectx_step (Ks ++ [Ki])); done. }
destruct H as [v H]. apply to_val_fill_some in H. by destruct H, Ks.
- rename select (of_val vp = _) into Hvp.
assert (to_val (fill Ks e1') = Some vp) as Hfillvp by rewrite -Hvp //.
apply to_val_fill_some in Hfillvp as [-> ->]. inv_head_step.
- rename select (of_val vt = _) into Hvt.
assert (to_val (fill Ks e1') = Some vt) as Hfillvt by rewrite -Hvt //.
apply to_val_fill_some in Hfillvt as [-> ->]. inv_head_step.
Qed.
Lemma wp_resolve s E e Φ (p : proph_id) v (pvs : list (val * val)) :
Atomic StronglyAtomic e →
to_val e = None →
proph p pvs -∗
WP e @ s; E {{ r, ∀ pvs', ⌜pvs = (r, v)::pvs'⌝ -∗ proph p pvs' -∗ Φ r }} -∗
WP Resolve e (Val $ LitV $ LitProphecy p) (Val v) @ s; E {{ Φ }}.
Proof.
(* TODO we should try to use a generic lifting lemma (and avoid [wp_unfold])
here, since this breaks the WP abstraction. *)
iIntros (A He) "Hp WPe". rewrite !wp_unfold /wp_pre /= He. simpl in *.
iIntros (σ1 κ κs n) "[Hσ Hκ]". destruct κ as [|[p' [w' v']] κ' _] using rev_ind.
- iMod ("WPe" $! σ1 [] κs n with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
{ iDestruct "Hs" as "%". iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
iIntros (e2 σ2 efs step). exfalso. apply step_resolve in step; last done.
inv_head_step. match goal with H: ?κs ++ [_] = [] |- _ => by destruct κs end.
- rewrite -assoc.
iMod ("WPe" $! σ1 _ _ n with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
{ iDestruct "Hs" as %?. iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
iIntros (e2 σ2 efs step). apply step_resolve in step; last done.
inv_head_step; simplify_list_eq.
iMod ("WPe" $! (Val w') σ2 efs with "[%]") as "WPe".
{ by eexists [] _ _. }
iModIntro. iNext. iMod "WPe" as "[[$ Hκ] WPe]".
iMod (proph_map_resolve_proph p' (w',v') κs with "[$Hκ $Hp]") as (vs' ->) "[$ HPost]".
iModIntro. rewrite !wp_unfold /wp_pre /=. iDestruct "WPe" as "[HΦ $]".
iMod "HΦ". iModIntro. by iApply "HΦ".
Qed.
End lifting.