Skip to content
Snippets Groups Projects
Forked from Iris / Iris
2413 commits behind the upstream repository.
functions.v 7.31 KiB
From stdpp Require Import finite.
From iris.algebra Require Export cmra.
From iris.algebra Require Import updates.
Set Default Proof Using "Type".

Definition discrete_fun_insert `{EqDecision A} {B : A → ofeT}
    (x : A) (y : B x) (f : discrete_fun B) : discrete_fun B := λ x',
  match decide (x = x') with left H => eq_rect _ B y _ H | right _ => f x' end.
Instance: Params (@discrete_fun_insert) 5 := {}.

Definition discrete_fun_singleton `{EqDecision A} {B : A → ucmraT}
  (x : A) (y : B x) : discrete_fun B := discrete_fun_insert x y ε.
Instance: Params (@discrete_fun_singleton) 5 := {}.

Section ofe.
  Context `{Heqdec : EqDecision A} {B : A → ofeT}.
  Implicit Types x : A.
  Implicit Types f g : discrete_fun B.

  Global Instance discrete_funO_ofe_discrete :
    (∀ i, OfeDiscrete (B i)) → OfeDiscrete (discrete_funO B).
  Proof. intros HB f f' Heq i. apply HB, Heq. Qed.

  (** Properties of discrete_fun_insert. *)
  Global Instance discrete_fun_insert_ne x :
    NonExpansive2 (discrete_fun_insert (B:=B) x).
  Proof.
    intros n y1 y2 ? f1 f2 ? x'; rewrite /discrete_fun_insert.
    by destruct (decide _) as [[]|].
  Qed.
  Global Instance discrete_fun_insert_proper x :
    Proper ((≡) ==> (≡) ==> (≡)) (discrete_fun_insert (B:=B) x) := ne_proper_2 _.

  Lemma discrete_fun_lookup_insert f x y : (discrete_fun_insert x y f) x = y.
  Proof.
    rewrite /discrete_fun_insert; destruct (decide _) as [Hx|]; last done.
    by rewrite (proof_irrel Hx eq_refl).
  Qed.
  Lemma discrete_fun_lookup_insert_ne f x x' y :
    x ≠ x' → (discrete_fun_insert x y f) x' = f x'.
  Proof. by rewrite /discrete_fun_insert; destruct (decide _). Qed.

  Global Instance discrete_fun_insert_discrete f x y :
    Discrete f → Discrete y → Discrete (discrete_fun_insert x y f).
  Proof.
    intros ?? g Heq x'; destruct (decide (x = x')) as [->|].
    - rewrite discrete_fun_lookup_insert.
      apply: discrete. by rewrite -(Heq x') discrete_fun_lookup_insert.
    - rewrite discrete_fun_lookup_insert_ne //.
      apply: discrete. by rewrite -(Heq x') discrete_fun_lookup_insert_ne.
  Qed.
End ofe.

Section cmra.
  Context `{EqDecision A} {B : A → ucmraT}.
  Implicit Types x : A.
  Implicit Types f g : discrete_fun B.

  Global Instance discrete_funR_cmra_discrete:
    (∀ i, CmraDiscrete (B i)) → CmraDiscrete (discrete_funR B).
  Proof. intros HB. split; [apply _|]. intros x Hv i. apply HB, Hv. Qed.

  Global Instance discrete_fun_singleton_ne x :
    NonExpansive (discrete_fun_singleton x : B x → _).
  Proof. intros n y1 y2 ?; apply discrete_fun_insert_ne. done. by apply equiv_dist. Qed.
  Global Instance discrete_fun_singleton_proper x :
    Proper ((≡) ==> (≡)) (discrete_fun_singleton x) := ne_proper _.

  Lemma discrete_fun_lookup_singleton x (y : B x) : (discrete_fun_singleton x y) x = y.
  Proof. by rewrite /discrete_fun_singleton discrete_fun_lookup_insert. Qed.
  Lemma discrete_fun_lookup_singleton_ne x x' (y : B x) :
    x ≠ x' → (discrete_fun_singleton x y) x' = ε.
  Proof. intros; by rewrite /discrete_fun_singleton discrete_fun_lookup_insert_ne. Qed.

  Global Instance discrete_fun_singleton_discrete x (y : B x) :
    (∀ i, Discrete (ε : B i)) →  Discrete y → Discrete (discrete_fun_singleton x y).
  Proof. apply _. Qed.

  Lemma discrete_fun_singleton_validN n x (y : B x) : ✓{n} discrete_fun_singleton x y ↔ ✓{n} y.
  Proof.
    split; [by move=>/(_ x); rewrite discrete_fun_lookup_singleton|].
    move=>Hx x'; destruct (decide (x = x')) as [->|];
      rewrite ?discrete_fun_lookup_singleton ?discrete_fun_lookup_singleton_ne //.
    by apply ucmra_unit_validN.
  Qed.

  Lemma discrete_fun_singleton_core x (y : B x) :
    core (discrete_fun_singleton x y) ≡ discrete_fun_singleton x (core y).
  Proof.
    move=>x'; destruct (decide (x = x')) as [->|];
      by rewrite discrete_fun_lookup_core ?discrete_fun_lookup_singleton
      ?discrete_fun_lookup_singleton_ne // (core_id_core ∅).
  Qed.

  Global Instance discrete_fun_singleton_core_id x (y : B x) :
    CoreId y → CoreId (discrete_fun_singleton x y).
  Proof. by rewrite !core_id_total discrete_fun_singleton_core=> ->. Qed.

  Lemma discrete_fun_singleton_op (x : A) (y1 y2 : B x) :
    discrete_fun_singleton x y1 ⋅ discrete_fun_singleton x y2 ≡ discrete_fun_singleton x (y1 ⋅ y2).
  Proof.
    intros x'; destruct (decide (x' = x)) as [->|].
    - by rewrite discrete_fun_lookup_op !discrete_fun_lookup_singleton.
    - by rewrite discrete_fun_lookup_op !discrete_fun_lookup_singleton_ne // left_id.
  Qed.

  Lemma discrete_fun_insert_updateP x (P : B x → Prop) (Q : discrete_fun B → Prop) g y1 :
    y1 ~~>: P → (∀ y2, P y2 → Q (discrete_fun_insert x y2 g)) →
    discrete_fun_insert x y1 g ~~>: Q.
  Proof.
    intros Hy1 HP; apply cmra_total_updateP.
    intros n gf Hg. destruct (Hy1 n (Some (gf x))) as (y2&?&?).
    { move: (Hg x). by rewrite discrete_fun_lookup_op discrete_fun_lookup_insert. }
    exists (discrete_fun_insert x y2 g); split; [auto|].
    intros x'; destruct (decide (x' = x)) as [->|];
      rewrite discrete_fun_lookup_op ?discrete_fun_lookup_insert //; [].
    move: (Hg x'). by rewrite discrete_fun_lookup_op !discrete_fun_lookup_insert_ne.
  Qed.

  Lemma discrete_fun_insert_updateP' x (P : B x → Prop) g y1 :
    y1 ~~>: P →
    discrete_fun_insert x y1 g ~~>: λ g', ∃ y2, g' = discrete_fun_insert x y2 g ∧ P y2.
  Proof. eauto using discrete_fun_insert_updateP. Qed.
  Lemma discrete_fun_insert_update g x y1 y2 :
    y1 ~~> y2 → discrete_fun_insert x y1 g ~~> discrete_fun_insert x y2 g.
  Proof.
    rewrite !cmra_update_updateP; eauto using discrete_fun_insert_updateP with subst.
  Qed.

  Lemma discrete_fun_singleton_updateP x (P : B x → Prop) (Q : discrete_fun B → Prop) y1 :
    y1 ~~>: P → (∀ y2, P y2 → Q (discrete_fun_singleton x y2)) →
    discrete_fun_singleton x y1 ~~>: Q.
  Proof. rewrite /discrete_fun_singleton; eauto using discrete_fun_insert_updateP. Qed.
  Lemma discrete_fun_singleton_updateP' x (P : B x → Prop) y1 :
    y1 ~~>: P →
    discrete_fun_singleton x y1 ~~>: λ g, ∃ y2, g = discrete_fun_singleton x y2 ∧ P y2.
  Proof. eauto using discrete_fun_singleton_updateP. Qed.
  Lemma discrete_fun_singleton_update x (y1 y2 : B x) :
    y1 ~~> y2 → discrete_fun_singleton x y1 ~~> discrete_fun_singleton x y2.
  Proof. eauto using discrete_fun_insert_update. Qed.

  Lemma discrete_fun_singleton_updateP_empty x (P : B x → Prop) (Q : discrete_fun B → Prop) :
    ε ~~>: P → (∀ y2, P y2 → Q (discrete_fun_singleton x y2)) → ε ~~>: Q.
  Proof.
    intros Hx HQ; apply cmra_total_updateP.
    intros n gf Hg. destruct (Hx n (Some (gf x))) as (y2&?&?); first apply Hg.
    exists (discrete_fun_singleton x y2); split; [by apply HQ|].
    intros x'; destruct (decide (x' = x)) as [->|].
    - by rewrite discrete_fun_lookup_op discrete_fun_lookup_singleton.
    - rewrite discrete_fun_lookup_op discrete_fun_lookup_singleton_ne //. apply Hg.
  Qed.
  Lemma discrete_fun_singleton_updateP_empty' x (P : B x → Prop) :
    ε ~~>: P → ε ~~>: λ g, ∃ y2, g = discrete_fun_singleton x y2 ∧ P y2.
  Proof. eauto using discrete_fun_singleton_updateP_empty. Qed.
  Lemma discrete_fun_singleton_update_empty x (y : B x) :
    ε ~~> y → ε ~~> discrete_fun_singleton x y.
  Proof.
    rewrite !cmra_update_updateP;
      eauto using discrete_fun_singleton_updateP_empty with subst.
  Qed.
End cmra.