Forked from
Iris / Iris
6282 commits behind the upstream repository.
-
Robbert Krebbers authoredRobbert Krebbers authored
tree_sum.v 2.08 KiB
From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Export lang.
From iris.proofmode Require Export tactics.
From iris.heap_lang Require Import proofmode notation.
Inductive tree :=
| leaf : Z → tree
| node : tree → tree → tree.
Fixpoint is_tree `{!heapG Σ} (v : val) (t : tree) : iProp Σ :=
match t with
| leaf n => v = InjLV #n
| node tl tr =>
∃ (ll lr : loc) (vl vr : val),
v = InjRV (#ll,#lr) ★ ll ↦ vl ★ is_tree vl tl ★ lr ↦ vr ★ is_tree vr tr
end%I.
Fixpoint sum (t : tree) : Z :=
match t with
| leaf n => n
| node tl tr => sum tl + sum tr
end.
Definition sum_loop : val :=
rec: "sum_loop" "t" "l" :=
match: "t" with
InjL "n" => "l" <- "n" + !"l"
| InjR "tt" => "sum_loop" !(Fst "tt") "l" ;; "sum_loop" !(Snd "tt") "l"
end.
Definition sum' : val := λ: "t",
let: "l" := ref #0 in
sum_loop "t" "l";;
!"l".
Global Opaque sum_loop sum'.
Lemma sum_loop_wp `{!heapG Σ} v t l (n : Z) (Φ : val → iProp Σ) :
heap_ctx ★ l ↦ #n ★ is_tree v t
★ (l ↦ #(sum t + n) -★ is_tree v t -★ Φ #())
⊢ WP sum_loop v #l {{ Φ }}.
Proof.
iIntros "(#Hh & Hl & Ht & HΦ)".
iLöb (v t l n Φ) as "IH". wp_rec. wp_let.
destruct t as [n'|tl tr]; simpl in *.
- iDestruct "Ht" as "%"; subst.
wp_match. wp_load. wp_op. wp_store.
by iApply ("HΦ" with "Hl").
- iDestruct "Ht" as (ll lr vl vr) "(% & Hll & Htl & Hlr & Htr)"; subst.
wp_match. wp_proj. wp_load.
wp_apply ("IH" with "Hl Htl"). iIntros "Hl Htl".
wp_seq. wp_proj. wp_load.
wp_apply ("IH" with "Hl Htr"). iIntros "Hl Htr".
iApply ("HΦ" with "[Hl]").
{ by replace (sum tl + sum tr + n) with (sum tr + (sum tl + n)) by omega. }
iExists ll, lr, vl, vr. by iFrame.
Qed.
Lemma sum_wp `{!heapG Σ} v t Φ :
heap_ctx ★ is_tree v t ★ (is_tree v t -★ Φ #(sum t))
⊢ WP sum' v {{ Φ }}.
Proof.
iIntros "(#Hh & Ht & HΦ)". rewrite /sum'.
wp_let. wp_alloc l as "Hl". wp_let.
wp_apply sum_loop_wp; iFrame "Hh Ht Hl".
rewrite Z.add_0_r.
iIntros "Hl Ht". wp_seq. wp_load. by iApply "HΦ".
Qed.