Skip to content
Snippets Groups Projects
Commit 144584f3 authored by David Swasey's avatar David Swasey
Browse files

mu_mono implicits.

parent aa186b57
No related branches found
No related tags found
No related merge requests found
......@@ -83,7 +83,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
Lemma lt0 (n : nat) : ~ n < 0. Proof. by omega. Qed.
Lemma propsMW {P w n r w'} (HSw : w w') : P w n r -> P w' n r.
Proof. exact: (mu_mono _ _ P _ _ HSw). Qed.
Proof. exact: (mu_mono P HSw). Qed.
Lemma propsMNR {P w n r n' r'} (HLe : n' <= n) (HSr : r r') : P w n r -> P w n' r'.
Proof. exact: (uni_pred _ _ _ _ _ HLe HSr). Qed.
......
......@@ -30,6 +30,8 @@ Record monoMet_morphism T U `{pcmT : pcmType T} `{pcmU : pcmType U} := mkMUMorph
Arguments mkMUMorph [T U] {_ _ _ _ _ _ _ _ _ _} _ _.
Arguments mu_morph [T U] {_ _ _ _ _ _ _ _ _ _} _.
Arguments mu_mono {_ _} {_ _ _ _ _ _ _ _ _ _} _ {_ _} _.
Infix "-m>" := monoMet_morphism (at level 45, right associativity) : pumet_scope.
Notation "'m[(' f ')]'" := (mkMUMorph n[(f)] _).
Delimit Scope pumet_scope with pm.
......@@ -42,7 +44,7 @@ Section Morph_Props.
Program Definition pcomp (f : U -m> V) (g : T -m> U) :=
m[(f <M< g)].
Next Obligation.
intros x y HSub; now apply mu_mono, mu_mono.
intros x y HSub; apply mu_mono; now apply mu_mono.
Qed.
Program Definition pid := m[(umid _)].
......@@ -105,8 +107,8 @@ Section PUMMorphProps1.
- intros f g h Hfg Hgh; simpl; etransitivity; [apply Hfg | apply Hgh].
Qed.
Global Instance PM_proper (f : T -m> U) :
Proper (pord ==> pord) f := mu_mono _ _ f.
Global Instance PM_proper (f : T -m> U) : Proper (pord ==> pord) f.
Proof. apply mu_mono. Qed.
Definition PMasMono (f : T -m> U) : (T -m> U)%pd :=
mkMMorph (mu_morph f) _.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment