Skip to content
Snippets Groups Projects
Commit 1e249d75 authored by Joseph Tassarotti's avatar Joseph Tassarotti Committed by Robbert Krebbers
Browse files

General invariant tactic.

parent 040db00a
No related branches found
No related tags found
No related merge requests found
......@@ -90,6 +90,18 @@ Section proofs.
+ iIntros "HP". iApply "Hclose". iLeft. iNext. by iApply "HP'".
- iDestruct (cinv_own_1_l with "Hγ' Hγ") as %[].
Qed.
Global Instance into_inv_cinv N γ P : IntoInv (cinv N γ P) N.
Global Instance elim_inv_cinv p γ E N P P' Q Q' :
ElimModal True (|={E,E∖↑N}=> ( P cinv_own γ p) ( P ={E∖↑N,E}=∗ True))%I P' Q Q'
ElimInv (N E) N (cinv N γ P) [cinv_own γ p] P' Q Q'.
Proof.
rewrite /ElimInv/ElimModal.
iIntros (Helim ?) "(#H1&(Hown&_)&H2)".
iApply Helim; auto. iFrame "H2".
iMod (cinv_open E N γ p P with "[#] [Hown]") as "(HP&Hown&Hclose)"; auto.
by iFrame.
Qed.
End proofs.
Typeclasses Opaque cinv_own cinv.
From iris.base_logic.lib Require Export fancy_updates.
From stdpp Require Export namespaces.
From stdpp Require Export namespaces.
From iris.base_logic.lib Require Import wsat.
From iris.algebra Require Import gmap.
From iris.proofmode Require Import tactics coq_tactics intro_patterns.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Import uPred.
......@@ -94,6 +94,19 @@ Proof.
iApply "HP'". iFrame.
Qed.
Global Instance into_inv_inv N P : IntoInv (inv N P) N.
Global Instance elim_inv_inv E N P P' Q Q' :
ElimModal True (|={E,E∖↑N}=> P ( P ={E∖↑N,E}=∗ True))%I P' Q Q'
ElimInv (N E) N (inv N P) [] P' Q Q'.
Proof.
rewrite /ElimInv/ElimModal.
iIntros (Helim ?) "(#H1&_&H2)".
iApply Helim; auto; iFrame.
iMod (inv_open _ N with "[#]") as "(HP&Hclose)"; auto.
iFrame. by iModIntro.
Qed.
Lemma inv_open_timeless E N P `{!Timeless P} :
N E inv N P ={E,E∖↑N}=∗ P (P ={E∖↑N,E}=∗ True).
Proof.
......@@ -101,29 +114,3 @@ Proof.
iIntros "!> {$HP} HP". iApply "Hclose"; auto.
Qed.
End inv.
Tactic Notation "iInvCore" constr(N) "as" tactic(tac) constr(Hclose) :=
let Htmp := iFresh in
let patback := intro_pat.parse_one Hclose in
let pat := constr:(IList [[IIdent Htmp; patback]]) in
iMod (inv_open _ N with "[#]") as pat;
[idtac|iAssumption || fail "iInv: invariant" N "not found"|idtac];
[solve_ndisj || match goal with |- ?P => fail "iInv: cannot solve" P end
|tac Htmp].
Tactic Notation "iInv" constr(N) "as" constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as pat) Hclose.
Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1) ")"
constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as (x1) pat) Hclose.
Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) ")" constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as (x1 x2) pat) Hclose.
Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) ")"
constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as (x1 x2 x3) pat) Hclose.
Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as (x1 x2 x3 x4) pat) Hclose.
......@@ -110,4 +110,17 @@ Section proofs.
+ iFrame. iApply "Hclose". iNext. iLeft. by iFrame.
- iDestruct (na_own_disjoint with "Htoki Htoki2") as %?. set_solver.
Qed.
Global Instance into_inv_na p N P : IntoInv (na_inv p N P) N.
Global Instance elim_inv_na p F E N P P' Q Q':
ElimModal True (|={E}=> ( P na_own p (F∖↑N)) ( P na_own p (F∖↑N) ={E}=∗ na_own p F))%I
P' Q Q'
ElimInv (N E N F) N (na_inv p N P) [na_own p F] P' Q Q'.
Proof.
rewrite /ElimInv/ElimModal.
iIntros (Helim (?&?)) "(#H1&(Hown&_)&H2)".
iApply Helim; auto. iFrame "H2".
iMod (na_inv_open p E F N P with "[#] [Hown]") as "(HP&Hown&Hclose)"; auto.
by iFrame.
Qed.
End proofs.
From iris.bi Require Export bi.
From stdpp Require Import namespaces.
Set Default Proof Using "Type".
Import bi.
......@@ -467,6 +468,31 @@ Proof. by apply as_valid. Qed.
Lemma as_valid_2 (φ : Prop) {PROP : bi} (P : PROP) `{!AsValid φ P} : P φ.
Proof. by apply as_valid. Qed.
(* Input: `P`; Outputs: `N`,
Extracts the namespace associated with an invariant assertion. Used for `iInv`. *)
Class IntoInv {PROP : bi} (P: PROP) (N: namespace).
Arguments IntoInv {_} _%I _.
Hint Mode IntoInv + ! - : typeclass_instances.
(* Input: `Pinv`;
- `Pinv`, an invariant assertion
- `Ps_aux` is a list of additional assertions needed for opening an invariant;
- `Pout` is the assertion obtained by opening the invariant;
- `Q` is a goal on which iInv may be invoked;
- `Q'` is the transformed goal that must be proved after opening the invariant.
There are similarities to the definition of ElimModal, however we
want to be general enough to support uses in settings where there
is not a clearly associated instance of ElimModal of the right form
(e.g. to handle Iris 2.0 usage of iInv).
*)
Class ElimInv {PROP : bi} (φ: Prop) (N: namespace)
(Pinv : PROP) (Ps_aux: list PROP) (Pout Q Q': PROP) :=
elim_inv : φ Pinv [] Ps_aux (Pout -∗ Q') Q.
Arguments ElimInv {_} _ _ _ _%I _%I _%I _%I : simpl never.
Arguments elim_inv {_} _ _ _%I _%I _%I _%I _%I _%I.
Hint Mode ElimInv + - - ! - - - - : typeclass_instances.
(* We make sure that tactics that perform actions on *specific* hypotheses or
parts of the goal look through the [tc_opaque] connective, which is used to make
definitions opaque for type class search. For example, when using `iDestruct`,
......
......@@ -209,6 +209,16 @@ Proof.
repeat apply sep_mono=>//; apply affinely_persistently_if_flag_mono; by destruct q1.
Qed.
Lemma envs_lookup_delete_list_cons Δ Δ' Δ'' rp j js p1 p2 P Ps :
envs_lookup_delete rp j Δ = Some (p1, P, Δ')
envs_lookup_delete_list rp js Δ' = Some (p2, Ps, Δ'')
envs_lookup_delete_list rp (j :: js) Δ = Some (p1 && p2, (P :: Ps), Δ'').
Proof. rewrite //= => -> //= -> //=. Qed.
Lemma envs_lookup_delete_list_nil Δ rp :
envs_lookup_delete_list rp [] Δ = Some (true, [], Δ).
Proof. done. Qed.
Lemma envs_lookup_snoc Δ i p P :
envs_lookup i Δ = None envs_lookup i (envs_snoc Δ p i P) = Some (p, P).
Proof.
......@@ -1159,6 +1169,20 @@ Proof.
rewrite envs_entails_eq => ???? . rewrite envs_replace_singleton_sound //=.
rewrite affinely_persistently_if_elim. by eapply elim_modal.
Qed.
(** * Invariants *)
Lemma tac_inv_elim Δ1 Δ2 Δ3 js j p φ N P' P Ps Q Q' :
envs_lookup_delete_list false js Δ1 = Some (p, P :: Ps, Δ2)
ElimInv φ N P Ps P' Q Q'
φ
envs_app false (Esnoc Enil j P') Δ2 = Some Δ3
envs_entails Δ3 Q' envs_entails Δ1 Q.
Proof.
rewrite envs_entails_eq => ???? . rewrite envs_lookup_delete_list_sound //.
rewrite envs_app_singleton_sound //=.
rewrite //= affinely_persistently_if_elim //=.
rewrite -sep_assoc. by eapply elim_inv.
Qed.
End bi_tactics.
Section sbi_tactics.
......
From iris.proofmode Require Import coq_tactics.
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
From iris.bi Require Export bi big_op.
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From iris.proofmode Require Import class_instances.
From stdpp Require Import hlist pretty.
......@@ -214,6 +215,14 @@ Tactic Notation "iAssumption" :=
|fail "iAssumption:" Q "not found"]
end.
Tactic Notation "iAssumptionListCore" :=
repeat match goal with
| |- envs_lookup_delete_list _ ?ils ?p = Some (_, ?P :: ?Ps, _) =>
eapply envs_lookup_delete_list_cons; [by iAssumptionCore |]
| |- envs_lookup_delete_list _ ?ils ?p = Some (_, [], _) =>
eapply envs_lookup_delete_list_nil
end.
(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.
......@@ -1864,6 +1873,80 @@ Tactic Notation "iMod" open_constr(lem) "as" "(" simple_intropattern(x1)
Tactic Notation "iMod" open_constr(lem) "as" "%" simple_intropattern(pat) :=
iDestructCore lem as false (fun H => iModCore H; iPure H as pat).
Tactic Notation "iAssumptionInv" constr(N) :=
let rec find Γ i P :=
lazymatch Γ with
| Esnoc ?j ?P' =>
first [assert (IntoInv P' N) by apply _; unify P P'; unify i j|find Γ i P]
end in
match goal with
| |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs) = Some (_, ?P, _) =>
first [is_evar i; fail 1 | env_reflexivity]
| |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs) = Some (_, ?P, _) =>
is_evar i; first [find Γp i P | find Γs i P]; env_reflexivity
end.
Tactic Notation "iInvCore" constr(N) "with" constr(Hs) "as" tactic(tac) constr(Hclose) :=
let hd_id := fresh "hd_id" in evar (hd_id: ident);
let hd_id := eval unfold hd_id in hd_id in
let Htmp1 := iFresh in
let Htmp2 := iFresh in
let patback := intro_pat.parse_one Hclose in
eapply tac_inv_elim with _ _ (hd_id :: Hs) Htmp1 _ _ N _ _ _ _;
first eapply envs_lookup_delete_list_cons; swap 2 3;
[ iAssumptionInv N || fail "iInv: invariant" N "not found"
| apply _ ||
let I := match goal with |- ElimInv _ ?N ?I _ _ _ _ => I end in
fail "iInv: cannot eliminate invariant " I " with namespace " N
| iAssumptionListCore || fail "iInv: other assumptions not found"
| try (split_and?; solve [ fast_done | solve_ndisj ])
| env_reflexivity |];
let pat := constr:(IList [[IIdent Htmp2; patback]]) in
iDestruct Htmp1 as pat;
tac Htmp2.
Tactic Notation "iInvCore" constr(N) "as" tactic(tac) constr(Hclose) :=
let tl_ids := fresh "tl_ids" in evar (tl_ids: list ident);
let tl_ids := eval unfold tl_ids in tl_ids in
iInvCore N with tl_ids as (fun H => tac H) Hclose.
Tactic Notation "iInvCoreParse" constr(N) "with" constr(Hs) "as" tactic(tac) constr(Hclose) :=
let Hs := words Hs in
let Hs := eval vm_compute in (INamed <$> Hs) in
iInvCore N with Hs as (fun H => tac H) Hclose.
Tactic Notation "iInv" constr(N) "as" constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as pat) Hclose.
Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1) ")"
constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as (x1) pat) Hclose.
Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) ")" constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as (x1 x2) pat) Hclose.
Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) ")"
constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as (x1 x2 x3) pat) Hclose.
Tactic Notation "iInv" constr(N) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
constr(pat) constr(Hclose) :=
iInvCore N as (fun H => iDestructHyp H as (x1 x2 x3 x4) pat) Hclose.
Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" constr(pat) constr(Hclose) :=
iInvCoreParse N with Hs as (fun H => iDestructHyp H as pat) Hclose.
Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" "(" simple_intropattern(x1) ")"
constr(pat) constr(Hclose) :=
iInvCoreParse N with Hs as (fun H => iDestructHyp H as (x1) pat) Hclose.
Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) ")" constr(pat) constr(Hclose) :=
iInvCoreParse N with Hs as (fun H => iDestructHyp H as (x1 x2) pat) Hclose.
Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) ")"
constr(pat) constr(Hclose) :=
iInvCoreParse N with Hs as (fun H => iDestructHyp H as (x1 x2 x3) pat) Hclose.
Tactic Notation "iInv" constr(N) "with" constr(Hs) "as" "(" simple_intropattern(x1)
simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
constr(pat) constr(Hclose) :=
iInvCoreParse N with Hs as (fun H => iDestructHyp H as (x1 x2 x3 x4) pat) Hclose.
Hint Extern 0 (_ _) => iStartProof.
(* Make sure that by and done solve trivial things in proof mode *)
......
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import base_logic lib.invariants.
From iris.base_logic Require Import base_logic.
From iris.base_logic.lib Require Import invariants cancelable_invariants na_invariants.
Section base_logic_tests.
Context {M : ucmraT}.
......@@ -48,7 +49,7 @@ Section base_logic_tests.
End base_logic_tests.
Section iris_tests.
Context `{invG Σ}.
Context `{invG Σ, cinvG Σ, na_invG Σ}.
Lemma test_masks N E P Q R :
N E
......@@ -58,4 +59,89 @@ Section iris_tests.
iApply ("H" with "[% //] [$] [> HQ] [> //]").
by iApply inv_alloc.
Qed.
Lemma test_iInv_1 N P: inv N (bi_persistently P) ={}=∗ P.
Proof.
iIntros "#H".
iInv N as "#H2" "Hclose".
iMod ("Hclose" with "H2").
iModIntro. by iNext.
Qed.
Lemma test_iInv_2 γ p N P:
cinv N γ (bi_persistently P) cinv_own γ p ={}=∗ cinv_own γ p P.
Proof.
iIntros "(#?&?)".
iInv N as "(#HP&Hown)" "Hclose".
iMod ("Hclose" with "HP").
iModIntro. iFrame. by iNext.
Qed.
Lemma test_iInv_3 γ p1 p2 N P:
cinv N γ (bi_persistently P) cinv_own γ p1 cinv_own γ p2
={}=∗ cinv_own γ p1 cinv_own γ p2 P.
Proof.
iIntros "(#?&Hown1&Hown2)".
iInv N as "(#HP&Hown2)" "Hclose".
iMod ("Hclose" with "HP").
iModIntro. iFrame. by iNext.
Qed.
Lemma test_iInv_4 t N E1 E2 P:
N E2
na_inv t N (bi_persistently P) na_own t E1 na_own t E2
|={}=> na_own t E1 na_own t E2 P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N as "(#HP&Hown2)" "Hclose".
iMod ("Hclose" with "[HP Hown2]").
{ iFrame. done. }
iModIntro. iFrame. by iNext.
Qed.
(* test named selection of which na_own to use *)
Lemma test_iInv_5 t N E1 E2 P:
N E2
na_inv t N (bi_persistently P) na_own t E1 na_own t E2
={}=∗ na_own t E1 na_own t E2 P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N with "Hown2" as "(#HP&Hown2)" "Hclose".
iMod ("Hclose" with "[HP Hown2]").
{ iFrame. done. }
iModIntro. iFrame. by iNext.
Qed.
Lemma test_iInv_6 t N E1 E2 P:
N E1
na_inv t N (bi_persistently P) na_own t E1 na_own t E2
={}=∗ na_own t E1 na_own t E2 P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N with "Hown1" as "(#HP&Hown1)" "Hclose".
iMod ("Hclose" with "[HP Hown1]").
{ iFrame. done. }
iModIntro. iFrame. by iNext.
Qed.
(* test robustness in presence of other invariants *)
Lemma test_iInv_7 t N1 N2 N3 E1 E2 P:
N3 E1
inv N1 P na_inv t N3 (bi_persistently P) inv N2 P na_own t E1 na_own t E2
={}=∗ na_own t E1 na_own t E2 P.
Proof.
iIntros (?) "(#?&#?&#?&Hown1&Hown2)".
iInv N3 with "Hown1" as "(#HP&Hown1)" "Hclose".
iMod ("Hclose" with "[HP Hown1]").
{ iFrame. done. }
iModIntro. iFrame. by iNext.
Qed.
(* iInv should work even where we have "inv N P" in which P contains an evar *)
Lemma test_iInv_8 N : P, inv N P ={}=∗ P True inv N P.
Proof.
eexists. iIntros "#H".
iInv N as "HP" "Hclose".
iMod ("Hclose" with "[$HP]"). auto.
Qed.
End iris_tests.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment