Skip to content
Snippets Groups Projects
Commit 226104c9 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Merge commit '6b6c1265' into gen_proofmode

parents b5ce30bf 6b6c1265
No related branches found
No related tags found
No related merge requests found
Here we collect some information on how to set up your editor to properly input
and output the unicode characters used throughout Iris.
## General: Unicode Fonts
Most editors will just use system fonts for rendering unicode characters and do
not need furhter configuration once the fonts are installed. Here are some
combinations of fonts that are known to give readable results (i.e., each of
these sets of fonts covers all the required characters):
* Fira Mono, DejaVu Mono, Symbola
## Emacs
### Unicode Input
First, install `math-symbol-lists` by doing `M-x package-install math-symbol-lists`.
Next, add the following to your `~/.emacs` to configure an input method based on the math symbol list, and with some custom aliases for symbols used a lot in Iris:
```
;; Input of unicode symbols
(require 'math-symbol-lists)
; Automatically use math input method for Coq files
(add-hook 'coq-mode-hook (lambda () (set-input-method "math")))
; Input method for the minibuffer
(defun my-inherit-input-method ()
"Inherit input method from `minibuffer-selected-window'."
(let* ((win (minibuffer-selected-window))
(buf (and win (window-buffer win))))
(when buf
(activate-input-method (buffer-local-value 'current-input-method buf)))))
(add-hook 'minibuffer-setup-hook #'my-inherit-input-method)
; Define the actual input method
(quail-define-package "math" "UTF-8" "Ω" t)
(quail-define-rules ; add whatever extra rules you want to define here...
("\\mult" ?⋅)
("\\ent" ?⊢)
("\\valid" ?✓)
("\\box" ?□)
("\\later" ?▷)
("\\pred" ?φ)
("\\and" ?∧)
("\\or" ?∨)
("\\comp" ?∘)
("\\ccomp" ?◎)
("\\all" ?∀)
("\\ex" ?∃)
("\\to" ?→)
("\\sep" ?∗)
("\\lc" ?⌜)
("\\rc" ?⌝)
("\\lam" ?λ)
("\\empty" ?∅)
("\\Lam" ?Λ)
("\\Sig" ?Σ)
("\\-" ?∖)
("\\aa" ?●)
("\\af" ?◯)
("\\iff" ?↔)
("\\gname" ?γ)
("\\incl" ?≼)
("\\latert" ?▶)
)
(mapc (lambda (x)
(if (cddr x)
(quail-defrule (cadr x) (car (cddr x)))))
(append math-symbol-list-basic math-symbol-list-extended))
```
### Font Configuration
Even when usable fonts are installed, Emacs tends to pick bad fonts for some
symbols like universal and existential quantifiers. The following configuration
results in a decent choice for the symbols used in Iris:
```
;; Fonts
(set-face-attribute 'default nil :height 110) ; height is in 1/10pt
(dolist (ft (fontset-list))
; Main font
(set-fontset-font ft 'unicode (font-spec :name "Monospace"))
; Fallback font
; Appending to the 'unicode list makes emacs unbearably slow.
;(set-fontset-font ft 'unicode (font-spec :name "DejaVu Sans Mono") nil 'append)
(set-fontset-font ft nil (font-spec :name "DejaVu Sans Mono"))
)
; Fallback-fallback font
; If we 'append this to all fontsets, it picks Symbola even for some cases where DejaVu could
; be used. Adding it only to the "t" table makes it Do The Right Thing (TM).
(set-fontset-font t nil (font-spec :name "Symbola"))
```
......@@ -75,11 +75,14 @@ followed by `make build-dep`.
infrastructure. Users of the Iris Coq library should *not* depend on these
modules; they may change or disappear without any notice.
## Documentation
A LaTeX version of the core logic definitions and some derived forms is
available in [docs/iris.tex](docs/iris.tex). A compiled PDF version of this
document is [available online](http://plv.mpi-sws.org/iris/appendix-3.1.pdf).
## Further Documentation
* A LaTeX version of the core logic definitions and some derived forms is
available in [docs/iris.tex](docs/iris.tex). A compiled PDF version of this
document is [available online](http://plv.mpi-sws.org/iris/appendix-3.1.pdf).
* Information on how to set up your editor for unicode input and output is
collected in [Editor.md](Editor.md).
* The Iris Proof Mode (IPM) is documented at [ProofMode.md](ProofMode.md)
## Case Studies
......
......@@ -179,7 +179,7 @@ In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $
\infer{
\vctx, \var:\type \proves \wtt{\term}{\type} \and
\text{$\var$ is guarded in $\term$} \and
\text{$\type$ is complete}
\text{$\type$ is complete and inhabited}
}{
\vctx \proves \wtt{\MU \var:\type. \term}{\type}
}
......
......@@ -7,7 +7,7 @@ Import uPred.
(** Derived forms and lemmas about them. *)
Definition inv_def `{invG Σ} (N : namespace) (P : iProp Σ) : iProp Σ :=
( i, i (N:coPset) ownI i P)%I.
( i P', i (N:coPset) (P' P) ownI i P')%I.
Definition inv_aux : seal (@inv_def). by eexists. Qed.
Definition inv {Σ i} := unseal inv_aux Σ i.
Definition inv_eq : @inv = @inv_def := seal_eq inv_aux.
......@@ -21,19 +21,25 @@ Implicit Types N : namespace.
Implicit Types P Q R : iProp Σ.
Global Instance inv_contractive N : Contractive (inv N).
Proof.
rewrite inv_eq=> n ???. apply exist_ne=>i. by apply and_ne, ownI_contractive.
Qed.
Proof. rewrite inv_eq. solve_contractive. Qed.
Global Instance inv_ne N : NonExpansive (inv N).
Proof. apply contractive_ne, _. Qed.
Global Instance inv_Proper N : Proper ((⊣⊢) ==> (⊣⊢)) (inv N).
Global Instance inv_proper N : Proper ((⊣⊢) ==> (⊣⊢)) (inv N).
Proof. apply ne_proper, _. Qed.
Global Instance inv_persistent N P : Persistent (inv N P).
Proof. rewrite inv_eq /inv; apply _. Qed.
Lemma inv_iff N P Q : (P Q) -∗ inv N P -∗ inv N Q.
Proof.
iIntros "#HPQ". rewrite inv_eq. iDestruct 1 as (i P') "(?&#HP&?)".
iExists i, P'. iFrame. iNext; iAlways; iSplit.
- iIntros "HP'". iApply "HPQ". by iApply "HP".
- iIntros "HQ". iApply "HP". by iApply "HPQ".
Qed.
Lemma fresh_inv_name (E : gset positive) N : i, i E i (N:coPset).
Proof.
exists (coPpick ( N coPset.of_gset E)).
......@@ -48,6 +54,7 @@ Proof.
rewrite inv_eq /inv_def uPred_fupd_eq. iIntros "HP [Hw $]".
iMod (ownI_alloc ( (N : coPset)) P with "[$HP $Hw]")
as (i ?) "[$ ?]"; auto using fresh_inv_name.
do 2 iModIntro. iExists i, P. rewrite -(iff_refl True%I). auto.
Qed.
Lemma inv_alloc_open N E P :
......@@ -61,7 +68,9 @@ Proof.
{ rewrite -?ownE_op; [|set_solver..].
rewrite assoc_L -!union_difference_L //. set_solver. }
do 2 iModIntro. iFrame "HE\N". iSplitL "Hw HEi"; first by iApply "Hw".
iSplitL "Hi"; first by eauto. iIntros "HP [Hw HE\N]".
iSplitL "Hi".
{ iExists i, P. rewrite -(iff_refl True%I). auto. }
iIntros "HP [Hw HE\N]".
iDestruct (ownI_close with "[$Hw $Hi $HP $HD]") as "[$ HEi]".
do 2 iModIntro. iSplitL; [|done].
iCombine "HEi HEN\i HE\N" as "HEN".
......@@ -72,13 +81,16 @@ Qed.
Lemma inv_open E N P :
N E inv N P ={E,E∖↑N}=∗ P ( P ={E∖↑N,E}=∗ True).
Proof.
rewrite inv_eq /inv_def uPred_fupd_eq /uPred_fupd_def; iDestruct 1 as (i) "[Hi #HiP]".
rewrite inv_eq /inv_def uPred_fupd_eq /uPred_fupd_def.
iDestruct 1 as (i P') "(Hi & #HP' & #HiP)".
iDestruct "Hi" as % ?%elem_of_subseteq_singleton.
rewrite {1 4}(union_difference_L ( N) E) // ownE_op; last set_solver.
rewrite {1 5}(union_difference_L {[ i ]} ( N)) // ownE_op; last set_solver.
iIntros "(Hw & [HE $] & $) !> !>".
iDestruct (ownI_open i P with "[$Hw $HE $HiP]") as "($ & $ & HD)".
iIntros "HP [Hw $] !> !>". iApply ownI_close; by iFrame.
iDestruct (ownI_open i with "[$Hw $HE $HiP]") as "($ & HP & HD)".
iDestruct ("HP'" with "HP") as "$".
iIntros "HP [Hw $] !> !>". iApply (ownI_close _ P'). iFrame "HD Hw HiP".
iApply "HP'". iFrame.
Qed.
Lemma inv_open_timeless E N P `{!Timeless P} :
......
......@@ -43,6 +43,14 @@ Section proofs.
Global Instance na_inv_persistent p N P : Persistent (na_inv p N P).
Proof. rewrite /na_inv; apply _. Qed.
Lemma na_inv_iff p N P Q : (P Q) -∗ na_inv p N P -∗ na_inv p N Q.
Proof.
iIntros "#HPQ". rewrite /na_inv. iDestruct 1 as (i ?) "#Hinv".
iExists i. iSplit; first done. iApply (inv_iff with "[] Hinv").
iNext. iAlways. iSplit; (iIntros "[[? Ho]|?]";
[iLeft; iFrame "Ho"; by iApply "HPQ"|by iRight]).
Qed.
Lemma na_alloc : (|==> p, na_own p )%I.
Proof. by apply own_alloc. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment