Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
290363a5
Commit
290363a5
authored
4 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Reorganize `coq_tactics` file to remove `sbi` section.
parent
15ce289f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/proofmode/coq_tactics.v
+66
-73
66 additions, 73 deletions
theories/proofmode/coq_tactics.v
with
66 additions
and
73 deletions
theories/proofmode/coq_tactics.v
+
66
−
73
View file @
290363a5
...
...
@@ -8,7 +8,7 @@ Import env_notations.
Local
Open
Scope
lazy_bool_scope
.
(* Coq versions of the tactics *)
Section
bi_
tactics
.
Section
tactics
.
Context
{
PROP
:
bi
}
.
Implicit
Types
Γ
:
env
PROP
.
Implicit
Types
Δ
:
envs
PROP
.
...
...
@@ -791,8 +791,68 @@ Proof.
-
setoid_rewrite
<-
(
right_id
emp
%
I
_
(
Pout
_))
.
auto
.
Qed
.
End
bi_tactics
.
(** * Rewriting *)
Lemma
tac_rewrite
`{
!
BiInternalEq
PROP
}
Δ
i
p
Pxy
d
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
Pxy
)
→
∀
{
A
:
ofeT
}
(
x
y
:
A
)
(
Φ
:
A
→
PROP
),
IntoInternalEq
Pxy
x
y
→
(
Q
⊣⊢
Φ
(
if
d
is
Left
then
y
else
x
))
→
NonExpansive
Φ
→
envs_entails
Δ
(
Φ
(
if
d
is
Left
then
x
else
y
))
→
envs_entails
Δ
Q
.
Proof
.
intros
?
A
x
y
?
HPxy
->
?
.
rewrite
envs_entails_eq
.
apply
internal_eq_rewrite'
;
auto
.
rewrite
{
1
}
envs_lookup_sound
//.
rewrite
(
into_internal_eq
Pxy
x
y
)
intuitionistically_if_elim
sep_elim_l
.
destruct
d
;
auto
using
internal_eq_sym
.
Qed
.
Lemma
tac_rewrite_in
`{
!
BiInternalEq
PROP
}
Δ
i
p
Pxy
j
q
P
d
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
Pxy
)
→
envs_lookup
j
Δ
=
Some
(
q
,
P
)
→
∀
{
A
:
ofeT
}
(
x
y
:
A
)
(
Φ
:
A
→
PROP
),
IntoInternalEq
Pxy
x
y
→
(
P
⊣⊢
Φ
(
if
d
is
Left
then
y
else
x
))
→
NonExpansive
Φ
→
match
envs_simple_replace
j
q
(
Esnoc
Enil
j
(
Φ
(
if
d
is
Left
then
x
else
y
)))
Δ
with
|
None
=>
False
|
Some
Δ'
=>
envs_entails
Δ'
Q
end
→
envs_entails
Δ
Q
.
Proof
.
rewrite
envs_entails_eq
/
IntoInternalEq
=>
??
A
x
y
Φ
HPxy
HP
?
Hentails
.
destruct
(
envs_simple_replace
_
_
_
_)
as
[
Δ'
|]
eqn
:?;
last
done
.
rewrite
-
Hentails
.
rewrite
-
(
idemp
bi_and
(
of_envs
Δ
))
{
2
}(
envs_lookup_sound
_
i
)
//.
rewrite
(
envs_simple_replace_singleton_sound
_
_
j
)
//=.
rewrite
HP
HPxy
(
intuitionistically_if_elim
_
(_
≡
_)
%
I
)
sep_elim_l
.
rewrite
persistent_and_affinely_sep_r
-
assoc
.
apply
wand_elim_r'
.
rewrite
-
persistent_and_affinely_sep_r
.
apply
impl_elim_r'
.
destruct
d
.
-
apply
(
internal_eq_rewrite
x
y
(
λ
y
,
□
?q
Φ
y
-∗
of_envs
Δ'
)
%
I
)
.
solve_proper
.
-
rewrite
internal_eq_sym
.
eapply
(
internal_eq_rewrite
y
x
(
λ
y
,
□
?q
Φ
y
-∗
of_envs
Δ'
)
%
I
)
.
solve_proper
.
Qed
.
(** * Löb *)
Lemma
tac_löb
Δ
i
Q
:
BiLöb
PROP
→
env_spatial_is_nil
Δ
=
true
→
match
envs_app
true
(
Esnoc
Enil
i
(
▷
Q
)
%
I
)
Δ
with
|
None
=>
False
|
Some
Δ'
=>
envs_entails
Δ'
Q
end
→
envs_entails
Δ
Q
.
Proof
.
destruct
(
envs_app
_
_
_)
eqn
:?;
last
done
.
rewrite
envs_entails_eq
=>
??
HQ
.
rewrite
(
env_spatial_is_nil_intuitionistically
Δ
)
//.
rewrite
-
(
persistently_and_emp_elim
Q
)
.
apply
and_intro
;
first
apply
:
affine
.
rewrite
-
(
löb
(
<
pers
>
Q
)
%
I
)
later_persistently
.
apply
impl_intro_l
.
rewrite
envs_app_singleton_sound
//
;
simpl
;
rewrite
HQ
.
rewrite
persistently_and_intuitionistically_sep_l
-
{
1
}
intuitionistically_idemp
.
rewrite
intuitionistically_sep_2
wand_elim_r
intuitionistically_into_persistently_1
//.
Qed
.
End
tactics
.
(** * Introduction of modalities *)
(** The following _private_ classes are used internally by [tac_modal_intro] /
[iModIntro] to transform the proofmode environments when introducing a modality.
...
...
@@ -1015,56 +1075,9 @@ Section tac_modal_intro.
Qed
.
End
tac_modal_intro
.
Section
sbi_tactics
.
Context
{
PROP
:
bi
}
.
Implicit
Types
Γ
:
env
PROP
.
Implicit
Types
Δ
:
envs
PROP
.
Implicit
Types
P
Q
:
PROP
.
(** * Rewriting *)
Lemma
tac_rewrite
`{
!
BiInternalEq
PROP
}
Δ
i
p
Pxy
d
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
Pxy
)
→
∀
{
A
:
ofeT
}
(
x
y
:
A
)
(
Φ
:
A
→
PROP
),
IntoInternalEq
Pxy
x
y
→
(
Q
⊣⊢
Φ
(
if
d
is
Left
then
y
else
x
))
→
NonExpansive
Φ
→
envs_entails
Δ
(
Φ
(
if
d
is
Left
then
x
else
y
))
→
envs_entails
Δ
Q
.
Proof
.
intros
?
A
x
y
?
HPxy
->
?
.
rewrite
envs_entails_eq
.
apply
internal_eq_rewrite'
;
auto
.
rewrite
{
1
}
envs_lookup_sound
//.
rewrite
(
into_internal_eq
Pxy
x
y
)
intuitionistically_if_elim
sep_elim_l
.
destruct
d
;
auto
using
internal_eq_sym
.
Qed
.
Lemma
tac_rewrite_in
`{
!
BiInternalEq
PROP
}
Δ
i
p
Pxy
j
q
P
d
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
Pxy
)
→
envs_lookup
j
Δ
=
Some
(
q
,
P
)
→
∀
{
A
:
ofeT
}
(
x
y
:
A
)
(
Φ
:
A
→
PROP
),
IntoInternalEq
Pxy
x
y
→
(
P
⊣⊢
Φ
(
if
d
is
Left
then
y
else
x
))
→
NonExpansive
Φ
→
match
envs_simple_replace
j
q
(
Esnoc
Enil
j
(
Φ
(
if
d
is
Left
then
x
else
y
)))
Δ
with
|
None
=>
False
|
Some
Δ'
=>
envs_entails
Δ'
Q
end
→
envs_entails
Δ
Q
.
Proof
.
rewrite
envs_entails_eq
/
IntoInternalEq
=>
??
A
x
y
Φ
HPxy
HP
?
Hentails
.
destruct
(
envs_simple_replace
_
_
_
_)
as
[
Δ'
|]
eqn
:?;
last
done
.
rewrite
-
Hentails
.
rewrite
-
(
idemp
bi_and
(
of_envs
Δ
))
{
2
}(
envs_lookup_sound
_
i
)
//.
rewrite
(
envs_simple_replace_singleton_sound
_
_
j
)
//=.
rewrite
HP
HPxy
(
intuitionistically_if_elim
_
(_
≡
_)
%
I
)
sep_elim_l
.
rewrite
persistent_and_affinely_sep_r
-
assoc
.
apply
wand_elim_r'
.
rewrite
-
persistent_and_affinely_sep_r
.
apply
impl_elim_r'
.
destruct
d
.
-
apply
(
internal_eq_rewrite
x
y
(
λ
y
,
□
?q
Φ
y
-∗
of_envs
Δ'
)
%
I
)
.
solve_proper
.
-
rewrite
internal_eq_sym
.
eapply
(
internal_eq_rewrite
y
x
(
λ
y
,
□
?q
Φ
y
-∗
of_envs
Δ'
)
%
I
)
.
solve_proper
.
Qed
.
(** * Later *)
(** The class [MaybeIntoLaterNEnvs] is used by tactics that need to introduce
laters, e.g. the symbolic execution tactics. *)
Class
MaybeIntoLaterNEnvs
(
n
:
nat
)
(
Δ1
Δ2
:
envs
PROP
)
:=
{
laters, e.g.
,
the symbolic execution tactics. *)
Class
MaybeIntoLaterNEnvs
{
PROP
:
bi
}
(
n
:
nat
)
(
Δ1
Δ2
:
envs
PROP
)
:=
{
into_later_intuitionistic
:
TransformIntuitionisticEnv
(
modality_laterN
n
)
(
MaybeIntoLaterN
false
n
)
(
env_intuitionistic
Δ1
)
(
env_intuitionistic
Δ2
);
...
...
@@ -1073,13 +1086,13 @@ Class MaybeIntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs PROP) := {
(
MaybeIntoLaterN
false
n
)
(
env_spatial
Δ1
)
(
env_spatial
Δ2
)
false
}
.
Global
Instance
into_laterN_envs
n
Γp1
Γp2
Γs1
Γs2
m
:
Global
Instance
into_laterN_envs
{
PROP
:
bi
}
n
(
Γp1
Γp2
Γs1
Γs2
:
env
PROP
)
m
:
TransformIntuitionisticEnv
(
modality_laterN
n
)
(
MaybeIntoLaterN
false
n
)
Γp1
Γp2
→
TransformSpatialEnv
(
modality_laterN
n
)
(
MaybeIntoLaterN
false
n
)
Γs1
Γs2
false
→
MaybeIntoLaterNEnvs
n
(
Envs
Γp1
Γs1
m
)
(
Envs
Γp2
Γs2
m
)
.
Proof
.
by
split
.
Qed
.
Lemma
into_laterN_env_sound
n
Δ1
Δ2
:
Lemma
into_laterN_env_sound
{
PROP
:
bi
}
n
(
Δ1
Δ2
:
envs
PROP
)
:
MaybeIntoLaterNEnvs
n
Δ1
Δ2
→
of_envs
Δ1
⊢
▷^
n
(
of_envs
Δ2
)
.
Proof
.
intros
[[
Hp
??]
[
Hs
??]];
rewrite
!
of_envs_eq
/=
!
laterN_and
!
laterN_sep
.
...
...
@@ -1090,23 +1103,3 @@ Proof.
+
intros
P
Q
.
by
rewrite
laterN_and
.
-
by
rewrite
Hs
//=
right_id
.
Qed
.
Lemma
tac_löb
Δ
i
Q
:
BiLöb
PROP
→
env_spatial_is_nil
Δ
=
true
→
match
envs_app
true
(
Esnoc
Enil
i
(
▷
Q
)
%
I
)
Δ
with
|
None
=>
False
|
Some
Δ'
=>
envs_entails
Δ'
Q
end
→
envs_entails
Δ
Q
.
Proof
.
destruct
(
envs_app
_
_
_)
eqn
:?;
last
done
.
rewrite
envs_entails_eq
=>
??
HQ
.
rewrite
(
env_spatial_is_nil_intuitionistically
Δ
)
//.
rewrite
-
(
persistently_and_emp_elim
Q
)
.
apply
and_intro
;
first
apply
:
affine
.
rewrite
-
(
löb
(
<
pers
>
Q
)
%
I
)
later_persistently
.
apply
impl_intro_l
.
rewrite
envs_app_singleton_sound
//
;
simpl
;
rewrite
HQ
.
rewrite
persistently_and_intuitionistically_sep_l
-
{
1
}
intuitionistically_idemp
.
rewrite
intuitionistically_sep_2
wand_elim_r
intuitionistically_into_persistently_1
//.
Qed
.
End
sbi_tactics
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment