Skip to content
Snippets Groups Projects
Commit 5b66d624 authored by Ralf Jung's avatar Ralf Jung
Browse files

Merge branch 'master' of gitlab.mpi-sws.org:FP/iris-coq

parents 10908369 dcfe93aa
No related branches found
No related tags found
No related merge requests found
From algebra Require Export cmra.
From prelude Require Import fin_maps.
From prelude Require Import gmap.
Fixpoint big_op {A : cmraT} `{Empty A} (xs : list A) : A :=
match xs with [] => | x :: xs => x big_op xs end.
Arguments big_op _ _ !_ /.
Instance: Params (@big_op) 2.
Definition big_opM {A : cmraT} `{FinMapToList K A M, Empty A} (m : M) : A :=
Definition big_opM `{Countable K} {A : cmraT} `{Empty A} (m : gmap K A) : A :=
big_op (snd <$> map_to_list m).
Instance: Params (@big_opM) 5.
......@@ -34,33 +34,31 @@ Proof.
Qed.
Lemma big_op_contains xs ys : xs `contains` ys big_op xs big_op ys.
Proof.
induction 1 as [|x xs ys|x y xs|x xs ys|xs ys zs]; rewrite //=.
- by apply cmra_preserving_l.
- by rewrite !assoc (comm _ y).
- by transitivity (big_op ys); last apply cmra_included_r.
- by transitivity (big_op ys).
intros [xs' ->]%contains_Permutation.
rewrite big_op_app; apply cmra_included_l.
Qed.
Lemma big_op_delete xs i x :
xs !! i = Some x x big_op (delete i xs) big_op xs.
Proof. by intros; rewrite {2}(delete_Permutation xs i x). Qed.
Context `{FinMap K M}.
Lemma big_opM_empty : big_opM ( : M A) ∅.
Context `{Countable K}.
Implicit Types m : gmap K A.
Lemma big_opM_empty : big_opM ( : gmap K A) ∅.
Proof. unfold big_opM. by rewrite map_to_list_empty. Qed.
Lemma big_opM_insert (m : M A) i x :
Lemma big_opM_insert m i x :
m !! i = None big_opM (<[i:=x]> m) x big_opM m.
Proof. intros ?; by rewrite /big_opM map_to_list_insert. Qed.
Lemma big_opM_delete (m : M A) i x :
Lemma big_opM_delete m i x :
m !! i = Some x x big_opM (delete i m) big_opM m.
Proof.
intros. by rewrite -{2}(insert_delete m i x) // big_opM_insert ?lookup_delete.
Qed.
Lemma big_opM_singleton i x : big_opM ({[i := x]} : M A) x.
Lemma big_opM_singleton i x : big_opM ({[i := x]} : gmap K A) x.
Proof.
rewrite -insert_empty big_opM_insert /=; last auto using lookup_empty.
by rewrite big_opM_empty right_id.
Qed.
Global Instance big_opM_proper : Proper (() ==> ()) (big_opM : M A _).
Global Instance big_opM_proper : Proper (() ==> ()) (big_opM : gmap K A _).
Proof.
intros m1; induction m1 as [|i x m1 ? IH] using map_ind.
{ by intros m2; rewrite (symmetry_iff ()) map_equiv_empty; intros ->. }
......
From algebra Require Export upred.
From prelude Require Import fin_maps fin_collections.
From prelude Require Import gmap fin_collections.
(** * Big ops over lists *)
(* These are the basic building blocks for other big ops *)
......@@ -14,14 +14,16 @@ Notation "'Π★' Ps" := (uPred_big_sep Ps) (at level 20) : uPred_scope.
(** * Other big ops *)
(** We use a type class to obtain overloaded notations *)
Definition uPred_big_sepM {M} `{FinMapToList K A MA}
(m : MA) (P : K A uPred M) : uPred M :=
Definition uPred_big_sepM {M} `{Countable K} {A}
(m : gmap K A) (P : K A uPred M) : uPred M :=
uPred_big_sep (curry P <$> map_to_list m).
Instance: Params (@uPred_big_sepM) 6.
Notation "'Π★{map' m } P" := (uPred_big_sepM m P)
(at level 20, m at level 10, format "Π★{map m } P") : uPred_scope.
Definition uPred_big_sepS {M} `{Elements A C}
(X : C) (P : A uPred M) : uPred M := uPred_big_sep (P <$> elements X).
Definition uPred_big_sepS {M} `{Countable A}
(X : gset A) (P : A uPred M) : uPred M := uPred_big_sep (P <$> elements X).
Instance: Params (@uPred_big_sepS) 5.
Notation "'Π★{set' X } P" := (uPred_big_sepS X P)
(at level 20, X at level 10, format "Π★{set X } P") : uPred_scope.
......@@ -32,7 +34,6 @@ Arguments always_stableL {_} _ {_}.
Section big_op.
Context {M : cmraT}.
Implicit Types P Q : uPred M.
Implicit Types Ps Qs : list (uPred M).
Implicit Types A : Type.
......@@ -41,6 +42,19 @@ Global Instance big_and_proper : Proper ((≡) ==> (≡)) (@uPred_big_and M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_sep_proper : Proper (() ==> ()) (@uPred_big_sep M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_and_ne n :
Proper (Forall2 (dist n) ==> dist n) (@uPred_big_and M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_sep_ne n :
Proper (Forall2 (dist n) ==> dist n) (@uPred_big_sep M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_and_mono' : Proper (Forall2 () ==> ()) (@uPred_big_and M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_sep_mono' : Proper (Forall2 () ==> ()) (@uPred_big_sep M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_and_perm : Proper (() ==> ()) (@uPred_big_and M).
Proof.
induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto.
......@@ -55,34 +69,121 @@ Proof.
- by rewrite !assoc (comm _ P).
- etransitivity; eauto.
Qed.
Lemma big_and_app Ps Qs : (Π (Ps ++ Qs))%I (Π Ps Π Qs)%I.
Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
Lemma big_sep_app Ps Qs : (Π (Ps ++ Qs))%I (Π Ps Π Qs)%I.
Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
Lemma big_and_contains Ps Qs : Qs `contains` Ps (Π Ps)%I (Π Qs)%I.
Proof.
intros [Ps' ->]%contains_Permutation. by rewrite big_and_app uPred.and_elim_l.
Qed.
Lemma big_sep_contains Ps Qs : Qs `contains` Ps (Π Ps)%I (Π Qs)%I.
Proof.
intros [Ps' ->]%contains_Permutation. by rewrite big_sep_app uPred.sep_elim_l.
Qed.
Lemma big_sep_and Ps : (Π Ps) (Π Ps).
Proof. by induction Ps as [|P Ps IH]; simpl; auto with I. Qed.
Lemma big_and_elem_of Ps P : P Ps (Π Ps) P.
Proof. induction 1; simpl; auto with I. Qed.
Lemma big_sep_elem_of Ps P : P Ps (Π Ps) P.
Proof. induction 1; simpl; auto with I. Qed.
(* Big ops over finite maps *)
Section fin_map.
Context `{FinMap K Ma} {A} (P : K A uPred M).
Section gmap.
Context `{Countable K} {A : Type}.
Implicit Types m : gmap K A.
Implicit Types P : K A uPred M.
Lemma big_sepM_empty : (Π{map } P)%I True%I.
Proof. by rewrite /uPred_big_sep /uPred_big_sepM map_to_list_empty. Qed.
Lemma big_sepM_insert (m : Ma A) i x :
m !! i = None (Π{map <[i:=x]> m} P)%I (P i x Π{map m} P)%I.
Lemma big_sepM_mono P Q m1 m2 :
m2 m1 ( x k, m2 !! k = Some x P k x Q k x)
(Π{map m1} P) (Π{map m2} Q).
Proof.
intros ?; by rewrite /uPred_big_sep /uPred_big_sepM map_to_list_insert.
intros HX HP. transitivity (Π{map m2} P)%I.
- by apply big_sep_contains, fmap_contains, map_to_list_contains.
- apply big_sep_mono', Forall2_fmap, Forall2_Forall.
apply Forall_forall=> -[i x] ? /=. by apply HP, elem_of_map_to_list.
Qed.
Lemma big_sepM_singleton i x : (Π{map {[i := x]}} P)%I (P i x)%I.
Global Instance big_sepM_ne m n :
Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
(uPred_big_sepM (M:=M) m).
Proof.
intros P1 P2 HP. apply big_sep_ne, Forall2_fmap.
apply Forall2_Forall, Forall_true=> -[i x]; apply HP.
Qed.
Global Instance big_sepM_proper m :
Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
(uPred_big_sepM (M:=M) m).
Proof.
intros P1 P2 HP; apply equiv_dist=> n.
apply big_sepM_ne=> k x; apply equiv_dist, HP.
Qed.
Global Instance big_sepM_mono' m :
Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
(uPred_big_sepM (M:=M) m).
Proof. intros P1 P2 HP. apply big_sepM_mono; intros; [done|apply HP]. Qed.
Lemma big_sepM_empty P : (Π{map } P)%I True%I.
Proof. by rewrite /uPred_big_sepM map_to_list_empty. Qed.
Lemma big_sepM_insert P (m : gmap K A) i x :
m !! i = None (Π{map <[i:=x]> m} P)%I (P i x Π{map m} P)%I.
Proof. intros ?; by rewrite /uPred_big_sepM map_to_list_insert. Qed.
Lemma big_sepM_singleton P i x : (Π{map {[i := x]}} P)%I (P i x)%I.
Proof.
rewrite -insert_empty big_sepM_insert/=; last auto using lookup_empty.
by rewrite big_sepM_empty right_id.
Qed.
End fin_map.
End gmap.
(* Big ops over finite sets *)
Section gset.
Context `{Countable A}.
Implicit Types X : gset A.
Implicit Types P : A uPred M.
Lemma big_sepS_mono P Q X Y :
Y X ( x, x Y P x Q x) (Π{set X} P) (Π{set Y} Q).
Proof.
intros HX HP. transitivity (Π{set Y} P)%I.
- by apply big_sep_contains, fmap_contains, elements_contains.
- apply big_sep_mono', Forall2_fmap, Forall2_Forall.
apply Forall_forall=> x ? /=. by apply HP, elem_of_elements.
Qed.
Lemma big_sepS_ne X n :
Proper (pointwise_relation _ (dist n) ==> dist n) (uPred_big_sepS (M:=M) X).
Proof.
intros P1 P2 HP. apply big_sep_ne, Forall2_fmap.
apply Forall2_Forall, Forall_true=> x; apply HP.
Qed.
Lemma big_sepS_proper X :
Proper (pointwise_relation _ () ==> ()) (uPred_big_sepS (M:=M) X).
Proof.
intros P1 P2 HP; apply equiv_dist=> n.
apply big_sepS_ne=> x; apply equiv_dist, HP.
Qed.
Lemma big_sepS_mono' X :
Proper (pointwise_relation _ () ==> ()) (uPred_big_sepS (M:=M) X).
Proof. intros P1 P2 HP. apply big_sepS_mono; naive_solver. Qed.
Lemma big_sepS_empty P : (Π{set } P)%I True%I.
Proof. by rewrite /uPred_big_sepS elements_empty. Qed.
Lemma big_sepS_insert P X x :
x X (Π{set {[ x ]} X} P)%I (P x Π{set X} P)%I.
Proof. intros. by rewrite /uPred_big_sepS elements_union_singleton. Qed.
Lemma big_sepS_delete P X x :
x X (Π{set X} P)%I (P x Π{set X {[ x ]}} P)%I.
Proof.
intros. rewrite -big_sepS_insert; last solve_elem_of.
by rewrite -union_difference_L; last solve_elem_of.
Qed.
Lemma big_sepS_singleton P x : (Π{set {[ x ]}} P)%I (P x)%I.
Proof. intros. by rewrite /uPred_big_sepS elements_singleton /= right_id. Qed.
End gset.
(* Always stable *)
Local Notation AS := AlwaysStable.
......
......@@ -24,14 +24,35 @@ Proof.
- apply NoDup_elements.
- intros. by rewrite !elem_of_elements, E.
Qed.
Lemma elements_empty : elements ( : C) = [].
Proof.
apply elem_of_nil_inv; intros x.
rewrite elem_of_elements, elem_of_empty; tauto.
Qed.
Lemma elements_union_singleton (X : C) x :
x X elements ({[ x ]} X) x :: elements X.
Proof.
intros ?; apply NoDup_Permutation.
{ apply NoDup_elements. }
{ by constructor; rewrite ?elem_of_elements; try apply NoDup_elements. }
intros y; rewrite elem_of_elements, elem_of_union, elem_of_singleton.
by rewrite elem_of_cons, elem_of_elements.
Qed.
Lemma elements_singleton x : elements {[ x ]} = [x].
Proof.
apply Permutation_singleton. by rewrite <-(right_id () {[x]}),
elements_union_singleton, elements_empty by solve_elem_of.
Qed.
Lemma elements_contains X Y : X Y elements X `contains` elements Y.
Proof.
intros; apply NoDup_contains; auto using NoDup_elements.
intros x. rewrite !elem_of_elements; auto.
Qed.
Global Instance collection_size_proper: Proper (() ==> (=)) (@size C _).
Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.
Lemma size_empty : size ( : C) = 0.
Proof.
unfold size, collection_size. simpl.
rewrite (elem_of_nil_inv (elements )); [done|intro].
rewrite elem_of_elements, elem_of_empty; auto.
Qed.
Proof. unfold size, collection_size. simpl. by rewrite elements_empty. Qed.
Lemma size_empty_inv (X : C) : size X = 0 X ∅.
Proof.
intros; apply equiv_empty; intros x; rewrite <-elem_of_elements.
......@@ -42,14 +63,7 @@ Proof. split. apply size_empty_inv. by intros ->; rewrite size_empty. Qed.
Lemma size_non_empty_iff (X : C) : size X 0 X ∅.
Proof. by rewrite size_empty_iff. Qed.
Lemma size_singleton (x : A) : size {[ x ]} = 1.
Proof.
change (length (elements {[ x ]}) = length [x]).
apply Permutation_length, NoDup_Permutation.
- apply NoDup_elements.
- apply NoDup_singleton.
- intros y.
by rewrite elem_of_elements, elem_of_singleton, elem_of_list_singleton.
Qed.
Proof. unfold size, collection_size. simpl. by rewrite elements_singleton. Qed.
Lemma size_singleton_inv X x y : size X = 1 x X y X x = y.
Proof.
unfold size, collection_size. simpl. rewrite <-!elem_of_elements.
......
......@@ -671,6 +671,12 @@ Proof.
rewrite elem_of_map_to_list in Hlookup. congruence.
- by rewrite !map_of_to_list.
Qed.
Lemma map_to_list_contains {A} (m1 m2 : M A) :
m1 m2 map_to_list m1 `contains` map_to_list m2.
Proof.
intros; apply NoDup_contains; auto using NoDup_map_to_list.
intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = ∅.
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment