Skip to content
Snippets Groups Projects
Commit 5cfe326f authored by Ralf Jung's avatar Ralf Jung
Browse files

fix indentation and various nits

parent b0da646d
No related branches found
No related tags found
No related merge requests found
......@@ -66,11 +66,14 @@ Section ofe.
dyn_reservation_map_data_proj x {n} dyn_reservation_map_data_proj y
dyn_reservation_map_token_proj x = dyn_reservation_map_token_proj y.
Global Instance DynReservationMap_ne : NonExpansive2 (@DynReservationMap A).
Global Instance DynReservationMap_ne :
NonExpansive2 (@DynReservationMap A).
Proof. by split. Qed.
Global Instance DynReservationMap_proper : Proper (() ==> (=) ==> ()) (@DynReservationMap A).
Global Instance DynReservationMap_proper :
Proper (() ==> (=) ==> ()) (@DynReservationMap A).
Proof. by split. Qed.
Global Instance dyn_reservation_map_data_proj_ne: NonExpansive (@dyn_reservation_map_data_proj A).
Global Instance dyn_reservation_map_data_proj_ne :
NonExpansive (@dyn_reservation_map_data_proj A).
Proof. by destruct 1. Qed.
Global Instance dyn_reservation_map_data_proj_proper :
Proper (() ==> ()) (@dyn_reservation_map_data_proj A).
......@@ -151,198 +154,195 @@ Section cmra.
| CoPsetBot => False
end := eq_refl _.
Lemma dyn_reservation_map_included x y :
x y
dyn_reservation_map_data_proj x dyn_reservation_map_data_proj y
dyn_reservation_map_token_proj x dyn_reservation_map_token_proj y.
Proof.
split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
intros [[z1 Hz1] [z2 Hz2]]; exists (DynReservationMap z1 z2); split; auto.
Qed.
Lemma dyn_reservation_map_included x y :
x y
dyn_reservation_map_data_proj x dyn_reservation_map_data_proj y
dyn_reservation_map_token_proj x dyn_reservation_map_token_proj y.
Proof.
split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
intros [[z1 Hz1] [z2 Hz2]]; exists (DynReservationMap z1 z2); split; auto.
Qed.
Lemma dyn_reservation_map_data_proj_validN n x : {n} x {n} dyn_reservation_map_data_proj x.
Proof. by destruct x as [? [?|]]=> // -[??]. Qed.
Lemma dyn_reservation_map_token_proj_validN n x : {n} x {n} dyn_reservation_map_token_proj x.
Proof. by destruct x as [? [?|]]=> // -[??]. Qed.
Lemma dyn_reservation_map_data_proj_validN n x : {n} x {n} dyn_reservation_map_data_proj x.
Proof. by destruct x as [? [?|]]=> // -[??]. Qed.
Lemma dyn_reservation_map_token_proj_validN n x : {n} x {n} dyn_reservation_map_token_proj x.
Proof. by destruct x as [? [?|]]=> // -[??]. Qed.
Lemma dyn_reservation_map_cmra_mixin : CmraMixin (dyn_reservation_map A).
Proof.
apply (iso_cmra_mixin_restrict from_reservation_map to_reservation_map); try done.
- intros n [m [E|]];
rewrite dyn_reservation_map_validN_eq reservation_map_validN_eq /=;
naive_solver.
- intros n [m1 [E1|]] [m2 [E2|]] [Hm ?]=> // -[?[??]]; split; simplify_eq/=.
+ by rewrite -Hm.
+ split; first done. intros i. by rewrite -(dist_None n) -Hm dist_None.
- intros [m [E|]]; rewrite dyn_reservation_map_valid_eq dyn_reservation_map_validN_eq /=
?cmra_valid_validN; naive_solver eauto using O.
- intros n [m [E|]]; rewrite dyn_reservation_map_validN_eq /=;
naive_solver eauto using cmra_validN_S.
- intros n [m1 [E1|]] [m2 [E2|]]=> //=; rewrite dyn_reservation_map_validN_eq /=.
rewrite {1}/op /cmra_op /=. case_decide; last done.
intros [Hm [Hinf Hdisj]]; split; first by eauto using cmra_validN_op_l.
split.
+ rewrite ->difference_union_distr_r in Hinf.
eapply set_infinite_subseteq; last done.
set_solver.
+ intros i. move: (Hdisj i). rewrite lookup_op.
case: (m1 !! i)=> [a|]; last auto.
move=> [].
{ by case: (m2 !! i). }
set_solver.
Qed.
Lemma dyn_reservation_map_cmra_mixin : CmraMixin (dyn_reservation_map A).
Proof.
apply (iso_cmra_mixin_restrict from_reservation_map to_reservation_map); try done.
- intros n [m [E|]];
rewrite dyn_reservation_map_validN_eq reservation_map_validN_eq /=;
naive_solver.
- intros n [m1 [E1|]] [m2 [E2|]] [Hm ?]=> // -[?[??]]; split; simplify_eq/=.
+ by rewrite -Hm.
+ split; first done. intros i. by rewrite -(dist_None n) -Hm dist_None.
- intros [m [E|]]; rewrite dyn_reservation_map_valid_eq dyn_reservation_map_validN_eq /=
?cmra_valid_validN; naive_solver eauto using O.
- intros n [m [E|]]; rewrite dyn_reservation_map_validN_eq /=;
naive_solver eauto using cmra_validN_S.
- intros n [m1 [E1|]] [m2 [E2|]]=> //=; rewrite dyn_reservation_map_validN_eq /=.
rewrite {1}/op /cmra_op /=. case_decide; last done.
intros [Hm [Hinf Hdisj]]; split; first by eauto using cmra_validN_op_l.
split.
+ rewrite ->difference_union_distr_r_L in Hinf.
eapply set_infinite_subseteq, Hinf. set_solver.
+ intros i. move: (Hdisj i). rewrite lookup_op.
case: (m1 !! i); case: (m2 !! i); set_solver.
Qed.
Canonical Structure dyn_reservation_mapR :=
Cmra (dyn_reservation_map A) dyn_reservation_map_cmra_mixin.
Canonical Structure dyn_reservation_mapR :=
Cmra (dyn_reservation_map A) dyn_reservation_map_cmra_mixin.
Global Instance dyn_reservation_map_cmra_discrete :
CmraDiscrete A CmraDiscrete dyn_reservation_mapR.
Proof.
split; first apply _.
intros [m [E|]]; rewrite dyn_reservation_map_validN_eq dyn_reservation_map_valid_eq //=.
by intros [?%cmra_discrete_valid ?].
Qed.
Global Instance dyn_reservation_map_cmra_discrete :
CmraDiscrete A CmraDiscrete dyn_reservation_mapR.
Proof.
split; first apply _.
intros [m [E|]]; rewrite dyn_reservation_map_validN_eq dyn_reservation_map_valid_eq //=.
by intros [?%cmra_discrete_valid ?].
Qed.
Local Instance dyn_reservation_map_empty_instance : Unit (dyn_reservation_map A) :=
DynReservationMap ε ε.
Lemma dyn_reservation_map_ucmra_mixin : UcmraMixin (dyn_reservation_map A).
Proof.
split; simpl.
- rewrite dyn_reservation_map_valid_eq /=. split; [apply ucmra_unit_valid|]. split.
+ rewrite difference_empty. apply top_infinite.
+ set_solver.
- split; simpl; [by rewrite left_id|by rewrite left_id_L].
- do 2 constructor; [apply (core_id_core _)|done].
Qed.
Canonical Structure dyn_reservation_mapUR :=
Ucmra (dyn_reservation_map A) dyn_reservation_map_ucmra_mixin.
Local Instance dyn_reservation_map_empty_instance : Unit (dyn_reservation_map A) :=
DynReservationMap ε ε.
Lemma dyn_reservation_map_ucmra_mixin : UcmraMixin (dyn_reservation_map A).
Proof.
split; simpl.
- rewrite dyn_reservation_map_valid_eq /=. split; [apply ucmra_unit_valid|]. split.
+ rewrite difference_empty_L. apply top_infinite.
+ set_solver.
- split; simpl; [by rewrite left_id|by rewrite left_id_L].
- do 2 constructor; [apply (core_id_core _)|done].
Qed.
Canonical Structure dyn_reservation_mapUR :=
Ucmra (dyn_reservation_map A) dyn_reservation_map_ucmra_mixin.
Global Instance dyn_reservation_map_data_core_id N a :
CoreId a CoreId (dyn_reservation_map_data N a).
Proof. do 2 constructor; simpl; auto. apply core_id_core, _. Qed.
Global Instance dyn_reservation_map_data_core_id N a :
CoreId a CoreId (dyn_reservation_map_data N a).
Proof. do 2 constructor; simpl; auto. apply core_id_core, _. Qed.
Lemma dyn_reservation_map_data_valid N a :
(dyn_reservation_map_data N a) a.
Proof.
rewrite dyn_reservation_map_valid_eq /= singleton_valid.
split; first naive_solver. intros Ha.
split; first done. split; last set_solver.
rewrite difference_empty. apply top_infinite.
Qed.
Lemma dyn_reservation_map_token_valid E :
(dyn_reservation_map_token E) set_infinite ( E).
Proof.
rewrite dyn_reservation_map_valid_eq /=. split; first naive_solver.
intros Hinf. do 2 (split; first done). by left.
Qed.
Lemma dyn_reservation_map_data_op N a b :
dyn_reservation_map_data N (a b) = dyn_reservation_map_data N a dyn_reservation_map_data N b.
Proof.
by rewrite {2}/op /dyn_reservation_map_op_instance /dyn_reservation_map_data /= singleton_op left_id_L.
Qed.
Lemma dyn_reservation_map_data_mono N a b :
a b dyn_reservation_map_data N a dyn_reservation_map_data N b.
Proof. intros [c ->]. rewrite dyn_reservation_map_data_op. apply cmra_included_l. Qed.
Global Instance dyn_reservation_map_data_is_op N a b1 b2 :
IsOp a b1 b2
IsOp' (dyn_reservation_map_data N a) (dyn_reservation_map_data N b1) (dyn_reservation_map_data N b2).
Proof. rewrite /IsOp' /IsOp=> ->. by rewrite dyn_reservation_map_data_op. Qed.
Lemma dyn_reservation_map_data_valid N a :
(dyn_reservation_map_data N a) a.
Proof.
rewrite dyn_reservation_map_valid_eq /= singleton_valid.
split; first naive_solver. intros Ha.
split; first done. split; last set_solver.
rewrite difference_empty_L. apply top_infinite.
Qed.
Lemma dyn_reservation_map_token_valid E :
(dyn_reservation_map_token E) set_infinite ( E).
Proof.
rewrite dyn_reservation_map_valid_eq /=. split; first naive_solver.
intros Hinf. do 2 (split; first done). by left.
Qed.
Lemma dyn_reservation_map_data_op N a b :
dyn_reservation_map_data N (a b) = dyn_reservation_map_data N a dyn_reservation_map_data N b.
Proof.
by rewrite {2}/op /dyn_reservation_map_op_instance /dyn_reservation_map_data /= singleton_op left_id_L.
Qed.
Lemma dyn_reservation_map_data_mono N a b :
a b dyn_reservation_map_data N a dyn_reservation_map_data N b.
Proof. intros [c ->]. rewrite dyn_reservation_map_data_op. apply cmra_included_l. Qed.
Global Instance dyn_reservation_map_data_is_op N a b1 b2 :
IsOp a b1 b2
IsOp' (dyn_reservation_map_data N a) (dyn_reservation_map_data N b1) (dyn_reservation_map_data N b2).
Proof. rewrite /IsOp' /IsOp=> ->. by rewrite dyn_reservation_map_data_op. Qed.
Lemma dyn_reservation_map_token_union E1 E2 :
E1 ## E2
dyn_reservation_map_token (E1 E2) = dyn_reservation_map_token E1 dyn_reservation_map_token E2.
Proof.
intros. by rewrite /op /dyn_reservation_map_op_instance
/dyn_reservation_map_token /= coPset_disj_union // left_id_L.
Qed.
Lemma dyn_reservation_map_token_difference E1 E2 :
E1 E2
dyn_reservation_map_token E2 = dyn_reservation_map_token E1 dyn_reservation_map_token (E2 E1).
Proof.
intros. rewrite -dyn_reservation_map_token_union; last set_solver.
by rewrite -union_difference_L.
Qed.
Lemma dyn_reservation_map_token_valid_op E1 E2 :
(dyn_reservation_map_token E1 dyn_reservation_map_token E2)
E1 ## E2 set_infinite ( (E1 E2)).
Proof.
split.
- rewrite dyn_reservation_map_valid_eq /= {1}/op /cmra_op /=. case_decide; last done.
naive_solver.
- intros [Hdisj Hinf]. rewrite -dyn_reservation_map_token_union //.
apply dyn_reservation_map_token_valid. done.
Qed.
Lemma dyn_reservation_map_token_union E1 E2 :
E1 ## E2
dyn_reservation_map_token (E1 E2) = dyn_reservation_map_token E1 dyn_reservation_map_token E2.
Proof.
intros. by rewrite /op /dyn_reservation_map_op_instance
/dyn_reservation_map_token /= coPset_disj_union // left_id_L.
Qed.
Lemma dyn_reservation_map_token_difference E1 E2 :
E1 E2
dyn_reservation_map_token E2 = dyn_reservation_map_token E1 dyn_reservation_map_token (E2 E1).
Proof.
intros. rewrite -dyn_reservation_map_token_union; last set_solver.
by rewrite -union_difference_L.
Qed.
Lemma dyn_reservation_map_token_valid_op E1 E2 :
(dyn_reservation_map_token E1 dyn_reservation_map_token E2)
E1 ## E2 set_infinite ( (E1 E2)).
Proof.
split.
- rewrite dyn_reservation_map_valid_eq /= {1}/op /cmra_op /=. case_decide; last done.
naive_solver.
- intros [Hdisj Hinf]. rewrite -dyn_reservation_map_token_union //.
apply dyn_reservation_map_token_valid. done.
Qed.
Lemma dyn_reservation_map_reserve (Q : dyn_reservation_map A Prop) :
( E, set_infinite E Q (dyn_reservation_map_token E))
ε ~~>: Q.
Proof.
intros HQ. apply cmra_total_updateP=> n [mf [Ef|]];
rewrite left_id {1}dyn_reservation_map_validN_eq /=; last done.
intros [Hmap [Hinf Hdisj]].
(* Pick a fresh set disjoint from the existing tokens [Ef] and map [mf],
such that both that set [E1] and the remainder [E2] are infinite. *)
edestruct (coPset_split_infinite ( (Ef dom coPset mf))) as
Lemma dyn_reservation_map_reserve (Q : dyn_reservation_map A Prop) :
( E, set_infinite E Q (dyn_reservation_map_token E))
ε ~~>: Q.
Proof.
intros HQ. apply cmra_total_updateP=> n [mf [Ef|]];
rewrite left_id {1}dyn_reservation_map_validN_eq /=; last done.
intros [Hmap [Hinf Hdisj]].
(* Pick a fresh set disjoint from the existing tokens [Ef] and map [mf],
such that both that set [E1] and the remainder [E2] are infinite. *)
edestruct (coPset_split_infinite ( (Ef dom coPset mf))) as
(E1 & E2 & HEunion & HEdisj & HE1inf & HE2inf).
{ rewrite -difference_difference.
apply difference_infinite; first done.
apply gset_to_coPset_finite. }
exists (dyn_reservation_map_token E1).
split; first by apply HQ. clear HQ.
rewrite dyn_reservation_map_validN_eq /=.
rewrite coPset_disj_union; last set_solver.
split; first by rewrite left_id. split.
- eapply set_infinite_subseteq; last by apply HE2inf. set_solver.
- intros i. rewrite left_id_L. destruct (Hdisj i) as [?|Hi]; first by left.
destruct (mf !! i) as [p|] eqn:Hp; last by left.
apply elem_of_dom_2 in Hp. right. set_solver.
Qed.
Lemma dyn_reservation_map_reserve' :
ε ~~>: (λ x, E, set_infinite E x = dyn_reservation_map_token E).
Proof. eauto using dyn_reservation_map_reserve. Qed.
{ rewrite -difference_difference_L.
by apply difference_infinite, dom_finite. }
exists (dyn_reservation_map_token E1).
split; first by apply HQ. clear HQ.
rewrite dyn_reservation_map_validN_eq /=.
rewrite coPset_disj_union; last set_solver.
split; first by rewrite left_id_L. split.
- eapply set_infinite_subseteq, HE2inf. set_solver.
- intros i. rewrite left_id_L. destruct (Hdisj i) as [?|Hi]; first by left.
destruct (mf !! i) as [p|] eqn:Hp; last by left.
apply elem_of_dom_2 in Hp. right. set_solver.
Qed.
Lemma dyn_reservation_map_reserve' :
ε ~~>: (λ x, E, set_infinite E x = dyn_reservation_map_token E).
Proof. eauto using dyn_reservation_map_reserve. Qed.
Lemma dyn_reservation_map_alloc E k a :
k E a dyn_reservation_map_token E ~~> dyn_reservation_map_data k a.
Proof.
intros ??. apply cmra_total_update=> n [mf [Ef|]] //.
rewrite dyn_reservation_map_validN_eq /= {1}/op /cmra_op /=. case_decide; last done.
rewrite left_id_L {1}left_id. intros [Hmf [Hinf Hdisj]]; split; last split.
- destruct (Hdisj (k)) as [Hmfi|]; last set_solver.
move: Hmfi. rewrite lookup_op lookup_empty left_id_L=> Hmfi.
intros j. rewrite lookup_op.
destruct (decide (k = j)) as [<-|].
+ rewrite Hmfi lookup_singleton right_id_L. by apply cmra_valid_validN.
+ by rewrite lookup_singleton_ne // left_id_L.
- eapply set_infinite_subseteq; last done. set_solver.
- intros j. destruct (decide (k = j)); first set_solver.
rewrite lookup_op lookup_singleton_ne //.
destruct (Hdisj j) as [Hmfi|?]; last set_solver.
move: Hmfi. rewrite lookup_op lookup_empty; auto.
Qed.
Lemma dyn_reservation_map_updateP P (Q : dyn_reservation_map A Prop) k a :
a ~~>: P
( a', P a' Q (dyn_reservation_map_data k a')) dyn_reservation_map_data k a ~~>: Q.
Proof.
intros Hup HP. apply cmra_total_updateP=> n [mf [Ef|]] //.
rewrite dyn_reservation_map_validN_eq /= left_id_L. intros [Hmf [Hinf Hdisj]].
destruct (Hup n (mf !! k)) as (a'&?&?).
{ move: (Hmf (k)).
by rewrite lookup_op lookup_singleton Some_op_opM. }
exists (dyn_reservation_map_data k a'); split; first by eauto.
rewrite /= left_id_L. split; last split.
- intros j. destruct (decide (k = j)) as [<-|].
+ by rewrite lookup_op lookup_singleton Some_op_opM.
+ rewrite lookup_op lookup_singleton_ne // left_id_L.
move: (Hmf j). rewrite lookup_op. eauto using cmra_validN_op_r.
- done.
- intros j. move: (Hdisj j).
rewrite !lookup_op !op_None !lookup_singleton_None. naive_solver.
Qed.
Lemma dyn_reservation_map_update k a b :
a ~~> b dyn_reservation_map_data k a ~~> dyn_reservation_map_data k b.
Proof.
rewrite !cmra_update_updateP. eauto using dyn_reservation_map_updateP with subst.
Qed.
Lemma dyn_reservation_map_alloc E k a :
k E a dyn_reservation_map_token E ~~> dyn_reservation_map_data k a.
Proof.
intros ??. apply cmra_total_update=> n [mf [Ef|]] //.
rewrite dyn_reservation_map_validN_eq /= {1}/op /cmra_op /=. case_decide; last done.
rewrite left_id_L {1}left_id. intros [Hmf [Hinf Hdisj]]; split; last split.
- destruct (Hdisj k) as [Hmfi|]; last set_solver.
move: Hmfi. rewrite lookup_op lookup_empty left_id_L=> Hmfi.
intros j. rewrite lookup_op.
destruct (decide (k = j)) as [<-|].
+ rewrite Hmfi lookup_singleton right_id_L. by apply cmra_valid_validN.
+ by rewrite lookup_singleton_ne // left_id_L.
- eapply set_infinite_subseteq, Hinf. set_solver.
- intros j. destruct (decide (k = j)); first set_solver.
rewrite lookup_op lookup_singleton_ne //.
destruct (Hdisj j) as [Hmfi|?]; last set_solver.
move: Hmfi. rewrite lookup_op lookup_empty; auto.
Qed.
Lemma dyn_reservation_map_updateP P (Q : dyn_reservation_map A Prop) k a :
a ~~>: P
( a', P a' Q (dyn_reservation_map_data k a'))
dyn_reservation_map_data k a ~~>: Q.
Proof.
intros Hup HP. apply cmra_total_updateP=> n [mf [Ef|]] //.
rewrite dyn_reservation_map_validN_eq /= left_id_L. intros [Hmf [Hinf Hdisj]].
destruct (Hup n (mf !! k)) as (a'&?&?).
{ move: (Hmf (k)).
by rewrite lookup_op lookup_singleton Some_op_opM. }
exists (dyn_reservation_map_data k a'); split; first by eauto.
rewrite /= left_id_L. split; last split.
- intros j. destruct (decide (k = j)) as [<-|].
+ by rewrite lookup_op lookup_singleton Some_op_opM.
+ rewrite lookup_op lookup_singleton_ne // left_id_L.
move: (Hmf j). rewrite lookup_op. eauto using cmra_validN_op_r.
- done.
- intros j. move: (Hdisj j).
rewrite !lookup_op !op_None !lookup_singleton_None. naive_solver.
Qed.
Lemma dyn_reservation_map_update k a b :
a ~~> b
dyn_reservation_map_data k a ~~> dyn_reservation_map_data k b.
Proof.
rewrite !cmra_update_updateP. eauto using dyn_reservation_map_updateP with subst.
Qed.
End cmra.
Global Arguments dyn_reservation_mapR : clear implicits.
......
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment