Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
631c8260
Commit
631c8260
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Some properties about bigops on upred.
parent
6092efe9
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/upred_big_op.v
+34
-12
34 additions, 12 deletions
algebra/upred_big_op.v
with
34 additions
and
12 deletions
algebra/upred_big_op.v
+
34
−
12
View file @
631c8260
From
iris
.
algebra
Require
Export
upred
list
.
From
iris
.
prelude
Require
Import
gmap
fin_collections
.
From
iris
.
prelude
Require
Import
gmap
fin_collections
functions
.
Import
uPred
.
(** * Big ops over lists *)
...
...
@@ -107,6 +107,13 @@ Section gmap.
-
apply
big_sep_mono'
,
Forall2_fmap
,
Forall_Forall2
.
apply
Forall_forall
=>
-
[
i
x
]
?
/=.
by
apply
HΦ
,
elem_of_map_to_list
.
Qed
.
Lemma
big_sepM_proper
Φ
Ψ
m1
m2
:
m1
≡
m2
→
(
∀
x
k
,
m1
!!
k
=
Some
x
→
m2
!!
k
=
Some
x
→
Φ
k
x
⊣⊢
Ψ
k
x
)
→
Π
★
{
map
m1
}
Φ
⊣⊢
Π
★
{
map
m2
}
Ψ
.
Proof
.
intros
[??]
?;
apply
(
anti_symm
(
⊢
));
apply
big_sepM_mono
;
eauto
using
equiv_entails
,
equiv_entails_sym
,
lookup_weaken
.
Qed
.
Global
Instance
big_sepM_ne
m
n
:
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
dist
n
))
==>
(
dist
n
))
...
...
@@ -115,17 +122,14 @@ Section gmap.
intros
Φ1
Φ2
HΦ
.
apply
big_sep_ne
,
Forall2_fmap
.
apply
Forall_Forall2
,
Forall_true
=>
-
[
i
x
];
apply
HΦ
.
Qed
.
Global
Instance
big_sepM_proper
m
:
Global
Instance
big_sepM_proper
'
m
:
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
⊣⊢
))
==>
(
⊣⊢
))
(
uPred_big_sepM
(
M
:=
M
)
m
)
.
Proof
.
intros
Φ1
Φ2
HΦ
;
apply
equiv_dist
=>
n
.
apply
big_sepM_ne
=>
k
x
;
apply
equiv_dist
,
HΦ
.
Qed
.
Proof
.
intros
Φ1
Φ2
HΦ
.
by
apply
big_sepM_proper
;
intros
;
last
apply
HΦ
.
Qed
.
Global
Instance
big_sepM_mono'
m
:
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
⊢
))
==>
(
⊢
))
(
uPred_big_sepM
(
M
:=
M
)
m
)
.
Proof
.
intros
Φ1
Φ2
HΦ
.
apply
big_sepM_mono
;
intros
;
[
done
|
apply
HΦ
]
.
Qed
.
Proof
.
intros
Φ1
Φ2
HΦ
.
by
apply
big_sepM_mono
;
intros
;
last
apply
HΦ
.
Qed
.
Lemma
big_sepM_empty
Φ
:
Π
★
{
map
∅
}
Φ
⊣⊢
True
.
Proof
.
by
rewrite
/
uPred_big_sepM
map_to_list_empty
.
Qed
.
...
...
@@ -167,6 +171,12 @@ Section gset.
-
apply
big_sep_mono'
,
Forall2_fmap
,
Forall_Forall2
.
apply
Forall_forall
=>
x
?
/=.
by
apply
HΦ
,
elem_of_elements
.
Qed
.
Lemma
big_sepS_proper
Φ
Ψ
X
Y
:
X
≡
Y
→
(
∀
x
,
x
∈
X
→
x
∈
Y
→
Φ
x
⊣⊢
Ψ
x
)
→
Π
★
{
set
X
}
Φ
⊣⊢
Π
★
{
set
Y
}
Ψ
.
Proof
.
intros
[??]
?;
apply
(
anti_symm
(
⊢
));
apply
big_sepS_mono
;
eauto
using
equiv_entails
,
equiv_entails_sym
.
Qed
.
Lemma
big_sepS_ne
X
n
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
uPred_big_sepS
(
M
:=
M
)
X
)
.
...
...
@@ -174,27 +184,39 @@ Section gset.
intros
Φ1
Φ2
HΦ
.
apply
big_sep_ne
,
Forall2_fmap
.
apply
Forall_Forall2
,
Forall_true
=>
x
;
apply
HΦ
.
Qed
.
Lemma
big_sepS_proper
X
:
Lemma
big_sepS_proper
'
X
:
Proper
(
pointwise_relation
_
(
⊣⊢
)
==>
(
⊣⊢
))
(
uPred_big_sepS
(
M
:=
M
)
X
)
.
Proof
.
intros
Φ1
Φ2
HΦ
;
apply
equiv_dist
=>
n
.
apply
big_sepS_ne
=>
x
;
apply
equiv_dist
,
HΦ
.
Qed
.
Proof
.
intros
Φ1
Φ2
HΦ
.
apply
big_sepS_proper
;
naive_solver
.
Qed
.
Lemma
big_sepS_mono'
X
:
Proper
(
pointwise_relation
_
(
⊢
)
==>
(
⊢
))
(
uPred_big_sepS
(
M
:=
M
)
X
)
.
Proof
.
intros
Φ1
Φ2
HΦ
.
apply
big_sepS_mono
;
naive_solver
.
Qed
.
Lemma
big_sepS_empty
Φ
:
Π
★
{
set
∅
}
Φ
⊣⊢
True
.
Proof
.
by
rewrite
/
uPred_big_sepS
elements_empty
.
Qed
.
Lemma
big_sepS_insert
Φ
X
x
:
x
∉
X
→
Π
★
{
set
{[
x
]}
∪
X
}
Φ
⊣⊢
(
Φ
x
★
Π
★
{
set
X
}
Φ
)
.
Proof
.
intros
.
by
rewrite
/
uPred_big_sepS
elements_union_singleton
.
Qed
.
Lemma
big_sepS_insert'
(
Ψ
:
A
→
uPred
M
→
uPred
M
)
Φ
X
x
P
:
x
∉
X
→
Π
★
{
set
{[
x
]}
∪
X
}
(
λ
y
,
Ψ
y
(
<
[
x
:=
P
]
>
Φ
y
))
⊣⊢
(
Ψ
x
P
★
Π
★
{
set
X
}
(
λ
y
,
Ψ
y
(
Φ
y
)))
.
Proof
.
intros
.
rewrite
big_sepS_insert
//
fn_lookup_insert
.
apply
sep_proper
,
big_sepS_proper
;
auto
=>
y
??
.
by
rewrite
fn_lookup_insert_ne
;
last
set_solver
.
Qed
.
Lemma
big_sepS_insert''
Φ
X
x
P
:
x
∉
X
→
Π
★
{
set
{[
x
]}
∪
X
}
(
<
[
x
:=
P
]
>
Φ
)
⊣⊢
(
P
★
Π
★
{
set
X
}
Φ
)
.
Proof
.
apply
(
big_sepS_insert'
(
λ
y
,
id
))
.
Qed
.
Lemma
big_sepS_delete
Φ
X
x
:
x
∈
X
→
Π
★
{
set
X
}
Φ
⊣⊢
(
Φ
x
★
Π
★
{
set
X
∖
{[
x
]}}
Φ
)
.
Proof
.
intros
.
rewrite
-
big_sepS_insert
;
last
set_solver
.
by
rewrite
-
union_difference_L
;
last
set_solver
.
Qed
.
Lemma
big_sepS_singleton
Φ
x
:
Π
★
{
set
{[
x
]}}
Φ
⊣⊢
(
Φ
x
)
.
Proof
.
intros
.
by
rewrite
/
uPred_big_sepS
elements_singleton
/=
right_id
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment