Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
649c6e79
Commit
649c6e79
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Stronger local update for multisets that entails the old ones.
parent
a18865f7
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/algebra/gmultiset.v
+9
-6
9 additions, 6 deletions
theories/algebra/gmultiset.v
with
9 additions
and
6 deletions
theories/algebra/gmultiset.v
+
9
−
6
View file @
649c6e79
...
...
@@ -61,19 +61,22 @@ Section gmultiset.
Lemma
gmultiset_update
X
Y
:
X
~~>
Y
.
Proof
.
done
.
Qed
.
Lemma
gmultiset_local_update
_alloc
X
Y
X'
:
(
X
,
Y
)
~l
~>
(
X
⊎
X'
,
Y
⊎
X
'
)
.
Lemma
gmultiset_local_update
X
Y
X'
Y'
:
X
⊎
Y'
=
X'
⊎
Y
→
(
X
,
Y
)
~l
~>
(
X
'
,
Y
'
)
.
Proof
.
rewrite
local_update_unital_discrete
=>
Z'
_
/
leibniz_equiv_iff
->
.
split
.
done
.
rewrite
!
gmultiset_op_disj_union
.
by
rewrite
-!
assoc
(
comm
_
Z'
X'
)
.
intros
HXY
.
rewrite
local_update_unital_discrete
=>
Z'
_
.
intros
->%
leibniz_equiv
.
split
;
first
done
.
apply
leibniz_equiv_iff
,
(
inj
(
⊎
Y
))
.
rewrite
-
HXY
!
gmultiset_op_disj_union
.
by
rewrite
-
(
comm_L
_
Y
)
(
comm_L
_
Y'
)
assoc_L
.
Qed
.
Lemma
gmultiset_local_update_alloc
X
Y
X'
:
(
X
,
Y
)
~l
~>
(
X
⊎
X'
,
Y
⊎
X'
)
.
Proof
.
apply
gmultiset_local_update
.
by
rewrite
(
comm_L
_
Y
)
assoc_L
.
Qed
.
Lemma
gmultiset_local_update_dealloc
X
Y
X'
:
X'
⊆
X
→
X'
⊆
Y
→
(
X
,
Y
)
~l
~>
(
X
∖
X'
,
Y
∖
X'
)
.
Proof
.
intros
->%
gmultiset_disj_union_difference
->%
gmultiset_disj_union_difference
.
rewrite
local_update_unital_discrete
=>
Z'
_
/
leibniz_equiv_iff
->
.
split
.
done
.
rewrite
!
gmultiset_op_disj_union
=>
x
.
apply
gmultiset_local_update
.
apply
gmultiset_eq
=>
x
.
repeat
(
rewrite
multiplicity_difference
||
rewrite
multiplicity_disj_union
)
.
lia
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment