Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
65a383bd
Commit
65a383bd
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
strengthen auth to also provide validity of the current total element
parent
0a593561
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/auth.v
+22
-15
22 additions, 15 deletions
program_logic/auth.v
with
22 additions
and
15 deletions
program_logic/auth.v
+
22
−
15
View file @
65a383bd
...
...
@@ -16,7 +16,7 @@ Section auth.
forall
a
b
,
(
✓
Auth
(
Excl
a
)
b
:
iPropG
Λ
Σ
)
⊑
(
∃
b'
,
a
≡
b
⋅
b'
)
.
Definition
auth_inv
(
γ
:
gname
)
:
iPropG
Λ
Σ
:=
(
∃
a
,
own
AuthI
γ
(
●
a
)
★
φ
a
)
%
I
.
(
∃
a
,
(
■✓
a
∧
own
AuthI
γ
(
●
a
)
)
★
φ
a
)
%
I
.
Definition
auth_own
(
γ
:
gname
)
(
a
:
A
)
:
iPropG
Λ
Σ
:=
own
AuthI
γ
(
◯
a
)
.
Definition
auth_ctx
(
γ
:
gname
)
:
iPropG
Λ
Σ
:=
inv
N
(
auth_inv
γ
)
.
...
...
@@ -29,6 +29,7 @@ Section auth.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
)
.
transitivity
(
▷
auth_inv
γ
★
auth_own
γ
a
)
%
I
.
{
rewrite
/
auth_inv
-
later_intro
-
(
exist_intro
a
)
.
rewrite
const_equiv
//
left_id
.
rewrite
[(_
★
φ
_)
%
I
]
comm
-
assoc
.
apply
sep_mono
;
first
done
.
rewrite
/
auth_own
-
own_op
auth_both_op
.
done
.
}
rewrite
(
inv_alloc
N
)
/
auth_ctx
pvs_frame_r
.
apply
pvs_mono
.
...
...
@@ -39,19 +40,23 @@ Section auth.
True
⊑
pvs
E
E
(
auth_own
γ
∅
)
.
Proof
.
by
rewrite
own_update_empty
/
auth_own
.
Qed
.
Context
{
Hφ
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
φ
}
.
Context
{
φ_ne
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
φ
}
.
Local
Instance
φ_proper
:
Proper
((
≡
)
==>
(
≡
))
φ
:=
ne_proper
_
.
Lemma
auth_opened
E
a
γ
:
(
▷
auth_inv
γ
★
auth_own
γ
a
)
⊑
pvs
E
E
(
∃
a'
,
▷
φ
(
a
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
.
(
▷
auth_inv
γ
★
auth_own
γ
a
)
⊑
pvs
E
E
(
∃
a'
,
■✓
(
a
⋅
a'
)
★
▷
φ
(
a
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
.
Proof
.
rewrite
/
auth_inv
.
rewrite
later_exist
sep_exist_r
.
apply
exist_elim
=>
b
.
rewrite
later_sep
[(
▷
own
_
_
_)
%
I
]
pvs_timeless
!
pvs_frame_r
.
apply
pvs_mono
.
rewrite
/
auth_own
[(_
★
▷
φ
_)
%
I
]
comm
-
assoc
-
own_op
.
rewrite
own_valid_r
auth_valid
!
sep_exist_l
/=.
apply
exist_elim
=>
a'
.
rewrite
later_sep
[(
▷
(_
∧
_))
%
I
]
pvs_timeless
!
pvs_frame_r
.
apply
pvs_mono
.
rewrite
always_and_sep_l
-!
assoc
.
apply
const_elim_sep_l
=>
Hv
.
rewrite
/
auth_own
[(
▷
φ
_
★
_)
%
I
]
comm
assoc
-
own_op
.
rewrite
own_valid_r
auth_valid
sep_exist_l
sep_exist_r
/=.
apply
exist_elim
=>
a'
.
rewrite
[
∅
⋅
_]
left_id
-
(
exist_intro
a'
)
.
apply
(
eq_rewrite
b
(
a
⋅
a'
)
(
λ
x
,
▷
φ
x
★
own
AuthI
γ
(
●
x
⋅
◯
a
))
%
I
);
first
by
solve_ne
.
{
by
rewrite
!
sep_elim_r
.
}
(
λ
x
,
■✓
x
★
▷
φ
x
★
own
AuthI
γ
(
●
x
⋅
◯
a
))
%
I
)
.
{
by
move
=>
n
?
?
/
timeless_iff
->
.
}
{
apply
sep_elim_l'
,
sep_elim_r'
.
done
.
(* FIXME why does "eauto using I not work? *)
}
rewrite
const_equiv
//
left_id
comm
.
apply
sep_mono
;
first
done
.
by
rewrite
sep_elim_l
.
Qed
.
...
...
@@ -64,7 +69,7 @@ Section auth.
intros
HL
Hv
.
rewrite
/
auth_inv
/
auth_own
-
(
exist_intro
(
L
a
⋅
a'
))
.
rewrite
later_sep
[(_
★
▷
φ
_)
%
I
]
comm
-
assoc
.
rewrite
-
pvs_frame_l
.
apply
sep_mono
;
first
done
.
rewrite
-
later_intro
-
own_op
.
rewrite
const_equiv
//
left_id
-
later_intro
-
own_op
.
by
apply
own_update
,
(
auth_local_update_l
L
)
.
Qed
.
...
...
@@ -72,20 +77,22 @@ Section auth.
step-indices. However, since A is timeless, that should not be
a restriction. *)
Lemma
auth_fsa
{
X
:
Type
}
{
FSA
}
(
FSAs
:
FrameShiftAssertion
(
A
:=
X
)
FSA
)
`{
!
LocalUpdate
Lv
L
}
E
P
(
Q
:
X
→
iPropG
Λ
Σ
)
R
γ
a
:
`{
!
LocalUpdate
Lv
L
}
E
P
(
Q
:
X
→
iPropG
Λ
Σ
)
γ
a
:
nclose
N
⊆
E
→
R
⊑
auth_ctx
γ
→
R
⊑
(
auth_own
γ
a
★
(
∀
a'
,
▷
φ
(
a
⋅
a'
)
-★
P
⊑
auth_ctx
γ
→
P
⊑
(
auth_own
γ
a
★
(
∀
a'
,
■✓
(
a
⋅
a'
)
★
▷
φ
(
a
⋅
a'
)
-★
FSA
(
E
∖
nclose
N
)
(
λ
x
,
■
(
Lv
a
∧
✓
(
L
a
⋅
a'
))
★
▷
φ
(
L
a
⋅
a'
)
★
(
auth_own
γ
(
L
a
)
-★
Q
x
))))
→
R
⊑
FSA
E
Q
.
P
⊑
FSA
E
Q
.
Proof
.
rewrite
/
auth_ctx
=>
HN
Hinv
Hinner
.
eapply
inv_fsa
;
[
eassumption
..|]
.
rewrite
Hinner
=>{
Hinner
Hinv
R
}
.
eapply
inv_fsa
;
[
eassumption
..|]
.
rewrite
Hinner
=>{
Hinner
Hinv
P
}
.
apply
wand_intro_l
.
rewrite
assoc
auth_opened
!
pvs_frame_r
!
sep_exist_r
.
apply
fsa_strip_pvs
;
first
done
.
apply
exist_elim
=>
a'
.
rewrite
(
forall_elim
a'
)
.
rewrite
[(
▷_
★
_)
%
I
]
comm
.
rewrite
-
[((_
★
▷_
)
★
_)
%
I
]
assoc
wand_elim_r
fsa_frame_l
.
(* Getting this wand eliminated is really annoying. *)
rewrite
[(
■_
★
_)
%
I
]
comm
-!
assoc
[(
▷
φ
_
★
_
★
_)
%
I
]
assoc
[(
▷
φ
_
★
_)
%
I
]
comm
.
rewrite
wand_elim_r
fsa_frame_l
.
apply
fsa_mono_pvs
;
first
done
.
intros
x
.
rewrite
comm
-!
assoc
.
apply
const_elim_sep_l
=>
-
[
HL
Hv
]
.
rewrite
assoc
[(_
★
(_
-★
_))
%
I
]
comm
-
assoc
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment