\upclose(S, T) \eqdef&\,\SET{ s' \in\STSS}{\exists s \in S.\;\textsf{frame}(s, T) \ststrans\textsf{frame}(s', T) }
\upclose(S, T) \eqdef&\,\setComp{ s' \in\STSS}{\exists s \in S.\;\textsf{frame}(s, T) \ststrans\textsf{frame}(s', T) }
\end{align*}
\noindent
...
...
@@ -358,7 +358,7 @@ This is exactly what we have to show, since we know $\STSL(s) \uplus T = \STSL(s
Let $\STSMon{\STSS}$ be the monoid with carrier
\[
\SET{(s, S, T)\in\exm{\STSS}\times\mathcal{P}(\STSS)\times\mathcal{P}(\STST)}{\begin{aligned}&(s =\munit\lor s \in S)\land\upclose(S, T)= S \land{}\\& S \neq\emptyset\land\All s \in S. \STSL(s)\sep T \end{aligned}}
\setComp{(s, S, T)\in\exm{\STSS}\times\mathcal{P}(\STSS)\times\mathcal{P}(\STST)}{\begin{aligned}&(s =\munit\lor s \in S)\land\upclose(S, T)= S \land{}\\& S \neq\emptyset\land\All s \in S. \STSL(s)\sep T \end{aligned}}