Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
919c0bde
Commit
919c0bde
authored
7 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Prove `except_0_forall` in both directions.
Thanks to Amin Timany for an initial version of the proof.
parent
777cf634
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/base_logic/derived.v
+12
-2
12 additions, 2 deletions
theories/base_logic/derived.v
with
12 additions
and
2 deletions
theories/base_logic/derived.v
+
12
−
2
View file @
919c0bde
...
...
@@ -827,8 +827,18 @@ Proof.
by
rewrite
-!
or_intro_l
-
persistently_pure
-
persistently_later
-
persistently_sep_dup
.
-
rewrite
sep_or_r
sep_elim_l
sep_or_l
;
auto
.
Qed
.
Lemma
except_0_forall
{
A
}
(
Φ
:
A
→
uPred
M
)
:
◇
(
∀
a
,
Φ
a
)
⊢
∀
a
,
◇
Φ
a
.
Proof
.
apply
forall_intro
=>
a
.
by
rewrite
(
forall_elim
a
)
.
Qed
.
Lemma
except_0_forall
{
A
}
(
Φ
:
A
→
uPred
M
)
:
◇
(
∀
a
,
Φ
a
)
⊣⊢
∀
a
,
◇
Φ
a
.
Proof
.
apply
(
anti_symm
_)
.
{
apply
forall_intro
=>
a
.
by
rewrite
(
forall_elim
a
)
.
}
trans
(
▷
(
∀
a
:
A
,
Φ
a
)
∧
(
∀
a
:
A
,
◇
Φ
a
))
%
I
.
{
apply
and_intro
,
reflexivity
.
rewrite
later_forall
.
apply
forall_mono
=>
a
.
apply
or_elim
;
auto
using
later_intro
.
}
rewrite
later_false_excluded_middle
and_or_r
.
apply
or_elim
.
{
rewrite
and_elim_l
.
apply
or_intro_l
.
}
apply
or_intro_r'
,
forall_intro
=>
a
.
rewrite
!
(
forall_elim
a
)
.
by
rewrite
/
uPred_except_0
and_or_l
impl_elim_l
and_elim_r
idemp
.
Qed
.
Lemma
except_0_exist_2
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
∃
a
,
◇
Φ
a
)
⊢
◇
∃
a
,
Φ
a
.
Proof
.
apply
exist_elim
=>
a
.
by
rewrite
(
exist_intro
a
)
.
Qed
.
Lemma
except_0_exist
`{
Inhabited
A
}
(
Φ
:
A
→
uPred
M
)
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment