Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
98e51974
Commit
98e51974
authored
8 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
STS: accessor for sts_inv
parent
1befd3fe
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algebra/sts.v
+4
-2
4 additions, 2 deletions
algebra/sts.v
program_logic/sts.v
+34
-10
34 additions, 10 deletions
program_logic/sts.v
with
38 additions
and
12 deletions
algebra/sts.v
+
4
−
2
View file @
98e51974
...
...
@@ -32,6 +32,7 @@ Notation steps := (rtc step).
Inductive
frame_step
(
T
:
tokens
sts
)
(
s1
s2
:
state
sts
)
:
Prop
:=
|
Frame_step
T1
T2
:
T1
⊥
tok
s1
∪
T
→
step
(
s1
,
T1
)
(
s2
,
T2
)
→
frame_step
T
s1
s2
.
Notation
frame_steps
T
:=
(
rtc
(
frame_step
T
))
.
(** ** Closure under frame steps *)
Record
closed
(
S
:
states
sts
)
(
T
:
tokens
sts
)
:
Prop
:=
Closed
{
...
...
@@ -39,7 +40,7 @@ Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
closed_step
s1
s2
:
s1
∈
S
→
frame_step
T
s1
s2
→
s2
∈
S
}
.
Definition
up
(
s
:
state
sts
)
(
T
:
tokens
sts
)
:
states
sts
:=
{[
s'
|
rtc
(
frame_step
T
)
s
s'
]}
.
{[
s'
|
frame_step
s
T
s
s'
]}
.
Definition
up_set
(
S
:
states
sts
)
(
T
:
tokens
sts
)
:
states
sts
:=
S
≫=
λ
s
,
up
s
T
.
...
...
@@ -86,7 +87,7 @@ Qed.
(** ** Properties of closure under frame steps *)
Lemma
closed_steps
S
T
s1
s2
:
closed
S
T
→
s1
∈
S
→
rtc
(
frame_step
T
)
s1
s2
→
s2
∈
S
.
closed
S
T
→
s1
∈
S
→
frame_step
s
T
s1
s2
→
s2
∈
S
.
Proof
.
induction
3
;
eauto
using
closed_step
.
Qed
.
Lemma
closed_op
T1
T2
S1
S2
:
closed
S1
T1
→
closed
S2
T2
→
closed
(
S1
∩
S2
)
(
T1
∪
T2
)
.
...
...
@@ -160,6 +161,7 @@ Proof. move=> ?? s [s' [? ?]]. eauto using closed_steps. Qed.
End
sts
.
Notation
steps
:=
(
rtc
step
)
.
Notation
frame_steps
T
:=
(
rtc
(
frame_step
T
))
.
(* The type of bounds we can give to the state of an STS. This is the type
that we equip with an RA structure. *)
...
...
This diff is collapsed.
Click to expand it.
program_logic/sts.v
+
34
−
10
View file @
98e51974
...
...
@@ -46,7 +46,7 @@ Section definitions.
Proof
.
apply
_
.
Qed
.
End
definitions
.
Typeclasses
Opaque
sts_own
sts_ownS
sts_ctx
.
Typeclasses
Opaque
sts_own
sts_ownS
sts_inv
sts_ctx
.
Instance
:
Params
(
@
sts_inv
)
5
.
Instance
:
Params
(
@
sts_ownS
)
5
.
Instance
:
Params
(
@
sts_own
)
6
.
...
...
@@ -85,17 +85,16 @@ Section sts.
{
apply
sts_auth_valid
;
set_solver
.
}
iExists
γ
;
iRevert
"Hγ"
;
rewrite
-
sts_op_auth_frag_up
;
iIntros
"[Hγ $]"
.
iVs
(
inv_alloc
N
_
(
sts_inv
γ
φ
)
with
"[Hφ Hγ]"
)
as
"#?"
;
auto
.
iNext
.
iExists
s
.
by
iFrame
.
rewrite
/
sts_inv
.
iNext
.
iExists
s
.
by
iFrame
.
Qed
.
Lemma
sts_openS
E
N
γ
S
T
:
nclose
N
⊆
E
→
sts_ctx
γ
N
φ
★
sts_ownS
γ
S
T
=
{
E
,
E
∖
N
}=>
∃
s
,
Lemma
sts_accS
E
γ
S
T
:
▷
sts_inv
γ
φ
★
sts_ownS
γ
S
T
=
{
E
}=>
∃
s
,
■
(
s
∈
S
)
★
▷
φ
s
★
∀
s'
T'
,
■
sts
.
steps
(
s
,
T
)
(
s'
,
T'
)
★
▷
φ
s'
=
{
E
∖
N
,
E
}
=
★
sts_own
γ
s'
T'
.
■
sts
.
steps
(
s
,
T
)
(
s'
,
T'
)
★
▷
φ
s'
=
{
E
}
=★
▷
sts_inv
γ
φ
★
sts_own
γ
s'
T'
.
Proof
.
iIntros
(?)
"[#?
Hγf]"
.
rewrite
/
sts_ctx
/
sts_ownS
/
sts_inv
/
sts_own
.
i
Inv
N
as
(
s
)
"[>Hγ Hφ]"
"Hclose"
.
iIntros
"[Hinv
Hγf]"
.
rewrite
/
sts_ownS
/
sts_inv
/
sts_own
.
i
Destruct
"Hinv"
as
(
s
)
"[>Hγ Hφ]"
.
iCombine
"Hγ"
"Hγf"
as
"Hγ"
;
iDestruct
(
own_valid
with
"#Hγ"
)
as
%
Hvalid
.
assert
(
s
∈
S
)
by
eauto
using
sts_auth_frag_valid_inv
.
assert
(
✓
sts_frag
S
T
)
as
[??]
by
eauto
using
cmra_valid_op_r
.
...
...
@@ -104,13 +103,38 @@ Section sts.
iIntros
(
s'
T'
)
"[% Hφ]"
.
iVs
(
own_update
with
"Hγ"
)
as
"Hγ"
;
first
eauto
using
sts_update_auth
.
iRevert
"Hγ"
;
rewrite
-
sts_op_auth_frag_up
;
iIntros
"[Hγ $]"
.
iApply
"Hclose"
.
iNext
;
iExists
s'
;
by
iFrame
.
iVsIntro
.
iNext
.
iExists
s'
;
by
iFrame
.
Qed
.
Lemma
sts_acc
E
γ
s0
T
:
▷
sts_inv
γ
φ
★
sts_own
γ
s0
T
=
{
E
}=>
∃
s
,
■
sts
.
frame_steps
T
s0
s
★
▷
φ
s
★
∀
s'
T'
,
■
sts
.
steps
(
s
,
T
)
(
s'
,
T'
)
★
▷
φ
s'
=
{
E
}
=★
▷
sts_inv
γ
φ
★
sts_own
γ
s'
T'
.
Proof
.
by
apply
sts_accS
.
Qed
.
Lemma
sts_openS
E
N
γ
S
T
:
nclose
N
⊆
E
→
sts_ctx
γ
N
φ
★
sts_ownS
γ
S
T
=
{
E
,
E
∖
N
}=>
∃
s
,
■
(
s
∈
S
)
★
▷
φ
s
★
∀
s'
T'
,
■
sts
.
steps
(
s
,
T
)
(
s'
,
T'
)
★
▷
φ
s'
=
{
E
∖
N
,
E
}
=★
sts_own
γ
s'
T'
.
Proof
.
iIntros
(?)
"[#? Hγf]"
.
rewrite
/
sts_ctx
.
iInv
N
as
"Hinv"
"Hclose"
.
(* The following is essentially a very trivial composition of the accessors
[sts_acc] and [inv_open] -- but since we don't have any good support
for that currently, this gets more tedious than it should, with us having
to unpack and repack various proofs.
TODO: Make this mostly automatic, by supporting "opening accessors
around accessors". *)
iVs
(
sts_accS
with
"[Hinv Hγf]"
)
as
(
s
)
"(?&?& HclSts)"
;
first
by
iFrame
.
iVsIntro
.
iExists
s
.
iFrame
.
iIntros
(
s'
T'
)
"H"
.
iVs
(
"HclSts"
$!
s'
T'
with
"H"
)
as
"(Hinv & ?)"
.
iFrame
.
iVs
(
"Hclose"
with
"Hinv"
)
.
done
.
Qed
.
Lemma
sts_open
E
N
γ
s0
T
:
nclose
N
⊆
E
→
sts_ctx
γ
N
φ
★
sts_own
γ
s0
T
=
{
E
,
E
∖
N
}=>
∃
s
,
■
(
s
∈
sts
.
up
s0
T
)
★
▷
φ
s
★
∀
s'
T'
,
■
(
s
ts
.
frame_steps
T
s0
s
)
★
▷
φ
s
★
∀
s'
T'
,
■
(
sts
.
steps
(
s
,
T
)
(
s'
,
T'
))
★
▷
φ
s'
=
{
E
∖
N
,
E
}
=★
sts_own
γ
s'
T'
.
Proof
.
by
apply
sts_openS
.
Qed
.
End
sts
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment