Skip to content
Snippets Groups Projects
Commit 9bd0393e authored by Ralf Jung's avatar Ralf Jung
Browse files

port proph_map to using ghost_map

parent 28289a77
No related branches found
No related tags found
No related merge requests found
From iris.proofmode Require Import tactics.
From iris.algebra Require Import gmap_view list.
From iris.base_logic.lib Require Export own.
From iris.base_logic.lib Require Import ghost_map.
From iris.prelude Require Import options.
Import uPred.
......@@ -9,7 +9,7 @@ Definition proph_val_list (P V : Type) := list (P * V).
(** The CMRA we need. *)
Class proph_mapPreG (P V : Type) (Σ : gFunctors) `{Countable P} := {
proph_map_preG_inG :> inG Σ (gmap_viewR P (listO $ leibnizO V))
proph_map_preG_inG :> ghost_mapG Σ P (list V)
}.
Class proph_mapG (P V : Type) (Σ : gFunctors) `{Countable P} := ProphMapG {
......@@ -19,7 +19,7 @@ Class proph_mapG (P V : Type) (Σ : gFunctors) `{Countable P} := ProphMapG {
Global Arguments proph_map_name {_ _ _ _ _} _ : assert.
Definition proph_mapΣ (P V : Type) `{Countable P} : gFunctors :=
#[GFunctor (gmap_viewR P (listO $ leibnizO V))].
#[ghost_mapΣ P (list V)].
Global Instance subG_proph_mapPreG {Σ P V} `{Countable P} :
subG (proph_mapΣ P V) Σ proph_mapPreG P V Σ.
......@@ -44,11 +44,10 @@ Section definitions.
Definition proph_map_interp pvs (ps : gset P) : iProp Σ :=
( R, proph_resolves_in_list R pvs
dom (gset _) R ps
own (proph_map_name pG) (gmap_view_auth (V:=listO $ leibnizO V) 1 R))%I.
dom (gset _) R ps ghost_map_auth (proph_map_name pG) 1 R)%I.
Definition proph_def (p : P) (vs : list V) : iProp Σ :=
own (proph_map_name pG) (gmap_view_frag (V:=listO $ leibnizO V) p (DfracOwn 1) vs).
p [proph_map_name pG] vs.
Definition proph_aux : seal (@proph_def). Proof. by eexists. Qed.
Definition proph := proph_aux.(unseal).
......@@ -76,8 +75,7 @@ End list_resolves.
Lemma proph_map_init `{Countable P, !proph_mapPreG P V PVS} pvs ps :
|==> _ : proph_mapG P V PVS, proph_map_interp pvs ps.
Proof.
iMod (own_alloc (gmap_view_auth 1 )) as (γ) "Hh".
{ apply gmap_view_auth_valid. }
iMod (ghost_map_alloc_empty) as (γ) "Hh".
iModIntro. iExists (ProphMapG P V PVS _ _ _ γ), ∅. iSplit; last by iFrame.
iPureIntro. done.
Qed.
......@@ -98,8 +96,7 @@ Section proph_map.
proph p vs1 -∗ proph p vs2 -∗ False.
Proof.
rewrite proph_eq /proph_def. iIntros "Hp1 Hp2".
iCombine "Hp1 Hp2" as "Hp".
iDestruct (own_valid with "Hp") as %[Hp _]%gmap_view_frag_op_valid_L.
iDestruct (ghost_map_elem_elem_ne with "Hp1 Hp2") as %?.
done.
Qed.
......@@ -110,9 +107,8 @@ Section proph_map.
Proof.
iIntros (Hp) "HR". iDestruct "HR" as (R) "[[% %] H●]".
rewrite proph_eq /proph_def.
iMod (own_update with "H●") as "[H● H◯]".
{ eapply (gmap_view_alloc _ p (DfracOwn 1)); last done.
apply (not_elem_of_dom (D:=gset P)). set_solver. }
iMod (ghost_map_insert p (proph_list_resolves pvs p) with "H●") as "[H● H◯]".
{ apply (not_elem_of_dom (D:=gset P)). set_solver. }
iModIntro. iFrame.
iExists (<[p := proph_list_resolves pvs p]> R).
iFrame. iPureIntro. split.
......@@ -126,11 +122,10 @@ Section proph_map.
Proof.
iIntros "[HR Hp]". iDestruct "HR" as (R) "[HP H●]". iDestruct "HP" as %[Hres Hdom].
rewrite /proph_map_interp proph_eq /proph_def.
iDestruct (own_valid_2 with "H● Hp") as %[_ HR]%gmap_view_both_valid_L.
iDestruct (ghost_map_lookup with "H● Hp") as %HR.
assert (vs = v :: proph_list_resolves pvs p) as ->.
{ rewrite (Hres p vs HR). simpl. by rewrite decide_True. }
iMod (own_update_2 with "H● Hp") as "[H● H◯]".
{ eapply gmap_view_update. }
iMod (ghost_map_update (proph_list_resolves pvs p) with "H● Hp") as "[H● H◯]".
iModIntro. iExists (proph_list_resolves pvs p). iFrame. iSplitR.
- iPureIntro. done.
- iExists _. iFrame. iPureIntro. split.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment