Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
a64118a2
Commit
a64118a2
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
prove pvs_alloc, modulo the closure under suffixes being infinite
parent
680ce446
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/namespace.v
+8
-6
8 additions, 6 deletions
program_logic/namespace.v
with
8 additions
and
6 deletions
program_logic/namespace.v
+
8
−
6
View file @
a64118a2
...
...
@@ -44,7 +44,7 @@ Local Hint Resolve nclose_subseteq ndot_nclose.
(** Derived forms and lemmas about them. *)
Definition
inv
{
Λ
Σ
}
(
N
:
namespace
)
(
P
:
iProp
Λ
Σ
)
:
iProp
Λ
Σ
:=
(
∃
i
:
positive
,
ownI
(
encode
$
ndot
N
i
)
P
)
%
I
.
(
∃
i
:
positive
,
■
(
i
∈
nclose
N
)
∧
ownI
i
P
)
%
I
.
Section
inv
.
Context
{
Λ
:
language
}
{
Σ
:
iFunctor
}
.
...
...
@@ -55,6 +55,7 @@ Implicit Types P Q R : iProp Λ Σ.
Global
Instance
inv_contractive
N
:
Contractive
(
@
inv
Λ
Σ
N
)
.
Proof
.
intros
n
?
?
EQ
.
apply
exists_ne
=>
i
.
apply
and_ne
;
first
done
.
by
apply
ownI_contractive
.
Qed
.
...
...
@@ -75,17 +76,18 @@ Lemma pvs_open_close E N P Q R :
Proof
.
move
=>
HN
->
{
P
}
.
rewrite
/
inv
and_exist_r
.
apply
exist_elim
=>
i
.
rewrite
-
associative
.
apply
const_elim_l
=>
HiN
.
(* Add this to the local context, so that solve_elem_of finds it. *)
assert
({[
encode
(
ndot
N
i
)
]}
⊆
nclose
N
)
by
eauto
.
assert
({[
encode
i
]}
⊆
nclose
N
)
by
eauto
.
rewrite
always_and_sep_l'
(
always_sep_dup'
(
ownI
_
_))
.
rewrite
{
1
}
pvs_openI
!
pvs_frame_r
.
(* TODO is there a common pattern here in the way we combine pvs_trans
and pvs_mask_frame_mono? *)
rewrite
-
(
pvs_trans
E
(
E
∖
{[
(
encode
(
ndot
N
i
))
]}));
rewrite
-
(
pvs_trans
E
(
E
∖
{[
encode
i
]}));
last
by
solve_elem_of
.
(* FIXME: Shouldn't eauto work, since I added a Hint Extern? *)
apply
pvs_mask_frame_mono
;
[
solve_elem_of
..|]
.
rewrite
(
commutative
_
(
▷
R
)
%
I
)
-
associative
wand_elim_r
pvs_frame_l
.
rewrite
-
(
pvs_trans
_
(
E
∖
{[
(
encode
(
ndot
N
i
))
]})
E
);
last
by
solve_elem_of
.
rewrite
-
(
pvs_trans
_
(
E
∖
{[
encode
i
]})
E
);
last
by
solve_elem_of
.
apply
pvs_mask_frame_mono
;
[
solve_elem_of
..|]
.
rewrite
associative
-
always_and_sep_l'
pvs_closeI
pvs_frame_r
left_id
.
apply
pvs_mask_frame'
;
solve_elem_of
.
...
...
@@ -93,8 +95,8 @@ Qed.
Lemma
pvs_alloc
N
P
:
▷
P
⊑
pvs
N
N
(
inv
N
P
)
.
Proof
.
(* FIXME: Can we have the E that contains exactly all (encode $ ndot N i) for all i?
If not, then we have to change the def. of inv
. *)
rewrite
/
inv
(
pvs_allocI
N
);
first
done
.
(* FIXME use coPset_suffixes_infinite
. *)
Abort
.
End
inv
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment