Skip to content
Snippets Groups Projects
Commit b5a23477 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Move class for later stripping to proofmode.

parent b3d2ff9b
No related branches found
No related tags found
No related merge requests found
......@@ -204,62 +204,3 @@ Tactic Notation "sep_split" "right:" open_constr(Ps) :=
to_back Ps; apply sep_mono.
Tactic Notation "sep_split" "left:" open_constr(Ps) :=
to_front Ps; apply sep_mono.
Class StripLaterR {M} (P Q : uPred M) := strip_later_r : P Q.
Arguments strip_later_r {_} _ _ {_}.
Class StripLaterL {M} (P Q : uPred M) := strip_later_l : Q P.
Arguments strip_later_l {_} _ _ {_}.
Section strip_later.
Context {M : ucmraT}.
Implicit Types P Q : uPred M.
Global Instance strip_later_r_fallthrough P : StripLaterR P P | 1000.
Proof. apply later_intro. Qed.
Global Instance strip_later_r_later P : StripLaterR ( P) P.
Proof. done. Qed.
Global Instance strip_later_r_and P1 P2 Q1 Q2 :
StripLaterR P1 Q1 StripLaterR P2 Q2 StripLaterR (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance strip_later_r_or P1 P2 Q1 Q2 :
StripLaterR P1 Q1 StripLaterR P2 Q2 StripLaterR (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance strip_later_r_sep P1 P2 Q1 Q2 :
StripLaterR P1 Q1 StripLaterR P2 Q2 StripLaterR (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.
Global Instance strip_later_r_big_sepM `{Countable K} {A}
(Φ Ψ : K A uPred M) (m : gmap K A) :
( x k, StripLaterR (Φ k x) (Ψ k x))
StripLaterR ([ map] k x m, Φ k x) ([ map] k x m, Ψ k x).
Proof.
rewrite /StripLaterR=> ?. rewrite big_sepM_later; by apply big_sepM_mono.
Qed.
Global Instance strip_later_r_big_sepS `{Countable A}
(Φ Ψ : A uPred M) (X : gset A) :
( x, StripLaterR (Φ x) (Ψ x))
StripLaterR ([ set] x X, Φ x) ([ set] x X, Ψ x).
Proof.
rewrite /StripLaterR=> ?. rewrite big_sepS_later; by apply big_sepS_mono.
Qed.
Global Instance strip_later_l_later P : StripLaterL ( P) P.
Proof. done. Qed.
Global Instance strip_later_l_and P1 P2 Q1 Q2 :
StripLaterL P1 Q1 StripLaterL P2 Q2 StripLaterL (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance strip_later_l_or P1 P2 Q1 Q2 :
StripLaterL P1 Q1 StripLaterL P2 Q2 StripLaterL (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance strip_later_l_sep P1 P2 Q1 Q2 :
StripLaterL P1 Q1 StripLaterL P2 Q2 StripLaterL (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.
End strip_later.
(** Assumes a goal of the shape P ⊢ ▷ Q. Alterantively, if Q
is built of ★, ∧, ∨ with ▷ in all branches; that will work, too.
Will turn this goal into P ⊢ Q and strip ▷ in P below ★, ∧, ∨. *)
Ltac strip_later :=
intros_revert ltac:(
etrans; [apply: strip_later_r|];
etrans; [|apply: strip_later_l]; apply later_mono).
......@@ -3,7 +3,7 @@ From iris.proofmode Require Export weakestpre.
From iris.heap_lang Require Export wp_tactics heap.
Import uPred.
Ltac strip_later ::= iNext.
Ltac wp_strip_later ::= iNext.
Section heap.
Context {Σ : gFunctors} `{heapG Σ}.
......
......@@ -22,13 +22,15 @@ Ltac wp_value_head :=
match goal with |- _ wp _ _ _ => simpl | _ => fail end)
end.
Ltac wp_strip_later := idtac. (* a hook to be redefined later *)
Ltac wp_seq_head :=
lazymatch goal with
| |- _ wp ?E (Seq _ _) ?Q => etrans; [|eapply wp_seq; wp_done]; strip_later
| |- _ wp ?E (Seq _ _) ?Q => etrans; [|eapply wp_seq; wp_done]; wp_strip_later
end.
Ltac wp_finish := intros_revert ltac:(
rewrite /= ?to_of_val; try strip_later; try wp_value_head);
rewrite /= ?to_of_val; try wp_strip_later; try wp_value_head);
repeat wp_seq_head.
Tactic Notation "wp_value" :=
......
From iris.algebra Require Export upred.
From iris.algebra Require Import upred_big_op upred_tactics.
From iris.algebra Require Import upred_big_op upred_tactics gmap.
From iris.proofmode Require Export environments.
From iris.prelude Require Import stringmap hlist.
Import uPred.
......@@ -352,8 +352,58 @@ Lemma tac_pure_revert Δ φ Q : (Δ ⊢ ■ φ → Q) → (φ → Δ ⊢ Q).
Proof. intros ?. by rewrite pure_equiv // left_id. Qed.
(** * Later *)
Class StripLaterR (P Q : uPred M) := strip_later_r : P Q.
Arguments strip_later_r _ _ {_}.
Class StripLaterL (P Q : uPred M) := strip_later_l : Q P.
Arguments strip_later_l _ _ {_}.
Class StripLaterEnv (Γ1 Γ2 : env (uPred M)) :=
strip_later_env : env_Forall2 StripLaterR Γ1 Γ2.
Class StripLaterEnvs (Δ1 Δ2 : envs M) := {
strip_later_persistent: StripLaterEnv (env_persistent Δ1) (env_persistent Δ2);
strip_later_spatial: StripLaterEnv (env_spatial Δ1) (env_spatial Δ2)
}.
Global Instance strip_later_r_fallthrough P : StripLaterR P P | 1000.
Proof. apply later_intro. Qed.
Global Instance strip_later_r_later P : StripLaterR ( P) P.
Proof. done. Qed.
Global Instance strip_later_r_and P1 P2 Q1 Q2 :
StripLaterR P1 Q1 StripLaterR P2 Q2 StripLaterR (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance strip_later_r_or P1 P2 Q1 Q2 :
StripLaterR P1 Q1 StripLaterR P2 Q2 StripLaterR (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance strip_later_r_sep P1 P2 Q1 Q2 :
StripLaterR P1 Q1 StripLaterR P2 Q2 StripLaterR (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.
Global Instance strip_later_r_big_sepM `{Countable K} {A}
(Φ Ψ : K A uPred M) (m : gmap K A) :
( x k, StripLaterR (Φ k x) (Ψ k x))
StripLaterR ([ map] k x m, Φ k x) ([ map] k x m, Ψ k x).
Proof.
rewrite /StripLaterR=> ?. rewrite big_sepM_later; by apply big_sepM_mono.
Qed.
Global Instance strip_later_r_big_sepS `{Countable A}
(Φ Ψ : A uPred M) (X : gset A) :
( x, StripLaterR (Φ x) (Ψ x))
StripLaterR ([ set] x X, Φ x) ([ set] x X, Ψ x).
Proof.
rewrite /StripLaterR=> ?. rewrite big_sepS_later; by apply big_sepS_mono.
Qed.
Global Instance strip_later_l_later P : StripLaterL ( P) P.
Proof. done. Qed.
Global Instance strip_later_l_and P1 P2 Q1 Q2 :
StripLaterL P1 Q1 StripLaterL P2 Q2 StripLaterL (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance strip_later_l_or P1 P2 Q1 Q2 :
StripLaterL P1 Q1 StripLaterL P2 Q2 StripLaterL (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance strip_later_l_sep P1 P2 Q1 Q2 :
StripLaterL P1 Q1 StripLaterL P2 Q2 StripLaterL (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.
Global Instance strip_later_env_nil : StripLaterEnv Enil Enil.
Proof. constructor. Qed.
Global Instance strip_later_env_snoc Γ1 Γ2 i P Q :
......@@ -361,14 +411,11 @@ Global Instance strip_later_env_snoc Γ1 Γ2 i P Q :
StripLaterEnv (Esnoc Γ1 i P) (Esnoc Γ2 i Q).
Proof. by constructor. Qed.
Class StripLaterEnvs (Δ1 Δ2 : envs M) := {
strip_later_persistent: StripLaterEnv (env_persistent Δ1) (env_persistent Δ2);
strip_later_spatial: StripLaterEnv (env_spatial Δ1) (env_spatial Δ2)
}.
Global Instance strip_later_envs Γp1 Γp2 Γs1 Γs2 :
StripLaterEnv Γp1 Γp2 StripLaterEnv Γs1 Γs2
StripLaterEnvs (Envs Γp1 Γs1) (Envs Γp2 Γs2).
Proof. by split. Qed.
Lemma strip_later_env_sound Δ1 Δ2 : StripLaterEnvs Δ1 Δ2 Δ1 Δ2.
Proof.
intros [Hp Hs]; rewrite /of_envs /= !later_sep -always_later.
......
......@@ -498,7 +498,7 @@ Tactic Notation "iAlways":=
Tactic Notation "iNext":=
eapply tac_next;
[apply _
|let P := match goal with |- upred_tactics.StripLaterL ?P _ => P end in
|let P := match goal with |- StripLaterL ?P _ => P end in
apply _ || fail "iNext:" P "does not contain laters"|].
(** * Introduction tactic *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment