Skip to content
Snippets Groups Projects
Commit e5c69b43 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Prove `<absorb> □ P ⊣⊢ <pers> P` and use it to refactor some stuff.

parent 92857393
No related branches found
No related tags found
No related merge requests found
......@@ -1113,10 +1113,24 @@ Proof. intros. rewrite -persistent_and_sep_1; auto. Qed.
Lemma persistent_entails_r P Q `{!Persistent Q} : (P Q) P P Q.
Proof. intros. rewrite -persistent_and_sep_1; auto. Qed.
Lemma persistent_absorbingly_affinely P `{!Persistent P} : P <absorb> <affine> P.
Lemma absorbingly_affinely_persistently P : <absorb> P ⊣⊢ <pers> P.
Proof.
by rewrite {1}(persistent_persistently_2 P) -persistently_affinely
persistently_elim_absorbingly.
apply (anti_symm _).
- by rewrite affinely_elim absorbingly_persistently.
- rewrite -{1}(idemp bi_and (<pers> _)%I) persistently_and_affinely_sep_r.
by rewrite {1} (True_intro (<pers> _)%I).
Qed.
Lemma persistent_absorbingly_affinely_2 P `{!Persistent P} :
P <absorb> <affine> P.
Proof.
rewrite {1}(persistent P) -absorbingly_affinely_persistently.
by rewrite -{1}affinely_idemp affinely_persistently_elim.
Qed.
Lemma persistent_absorbingly_affinely P `{!Persistent P, !Absorbing P} :
<absorb> <affine> P ⊣⊢ P.
Proof.
by rewrite -(persistent_persistently P) absorbingly_affinely_persistently.
Qed.
Lemma persistent_and_sep_assoc P `{!Persistent P, !Absorbing P} Q R :
......
......@@ -106,7 +106,7 @@ Global Instance into_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
Proof.
rewrite /FromPure /IntoPure=> <- -> /=.
rewrite pure_impl -impl_wand_2. apply bi.wand_intro_l.
rewrite {1}(persistent_absorbingly_affinely φ1⌝%I) absorbingly_sep_l
rewrite -{1}(persistent_absorbingly_affinely φ1⌝%I) absorbingly_sep_l
bi.wand_elim_r absorbing //.
Qed.
......@@ -186,8 +186,9 @@ Global Instance from_pure_affinely_false P φ `{!Affine P} :
FromPure false P φ FromPure false (<affine> P) φ.
Proof. rewrite /FromPure /= affine_affinely //. Qed.
Global Instance from_pure_absorbingly P φ : FromPure true P φ FromPure false (<absorb> P) φ.
Proof. rewrite /FromPure=> <- /=. apply persistent_absorbingly_affinely, _. Qed.
Global Instance from_pure_absorbingly P φ :
FromPure true P φ FromPure false (<absorb> P) φ.
Proof. rewrite /FromPure=> <- /=. by rewrite persistent_absorbingly_affinely. Qed.
Global Instance from_pure_embed `{BiEmbed PROP PROP'} a P φ :
FromPure a P φ FromPure a P φ.
Proof. rewrite /FromPure=> <-. by rewrite embed_affinely_if embed_pure. Qed.
......
......@@ -590,7 +590,7 @@ Proof.
- destruct HPQ.
+ rewrite -(affine_affinely P) (into_pure P) -persistent_and_affinely_sep_l.
by apply pure_elim_l.
+ rewrite (into_pure P) (persistent_absorbingly_affinely _ ⌝%I) absorbingly_sep_lr.
+ rewrite (into_pure P) -(persistent_absorbingly_affinely _ ⌝%I) absorbingly_sep_lr.
rewrite -persistent_and_affinely_sep_l. apply pure_elim_l=> ?. by rewrite HQ.
Qed.
......@@ -612,8 +612,8 @@ Proof.
+ rewrite -(affine_affinely P) (_ : P = <pers>?false P)%I //
(into_persistent _ P) wand_elim_r //.
+ rewrite (_ : P = <pers>?false P)%I // (into_persistent _ P).
by rewrite {1}(persistent_absorbingly_affinely (<pers> _)%I)
absorbingly_sep_l wand_elim_r HQ.
by rewrite -{1}absorbingly_affinely_persistently
absorbingly_sep_l wand_elim_r HQ.
Qed.
(** * Implication and wand *)
......@@ -669,8 +669,8 @@ Proof.
- rewrite -(affine_affinely P) (_ : P = <pers>?false P)%I //
(into_persistent _ P) wand_elim_r //.
- rewrite (_ : P = ?false P)%I // (into_persistent _ P).
by rewrite {1}(persistent_absorbingly_affinely (<pers> _)%I)
absorbingly_sep_l wand_elim_r HQ.
by rewrite -{1}absorbingly_affinely_persistently
absorbingly_sep_l wand_elim_r HQ.
Qed.
Lemma tac_wand_intro_pure Δ P φ Q R :
FromWand R P Q
......@@ -681,7 +681,7 @@ Proof.
rewrite /FromWand envs_entails_eq. intros <- ? HPQ HQ. apply wand_intro_l. destruct HPQ.
- rewrite -(affine_affinely P) (into_pure P) -persistent_and_affinely_sep_l.
by apply pure_elim_l.
- rewrite (into_pure P) (persistent_absorbingly_affinely _ ⌝%I) absorbingly_sep_lr.
- rewrite (into_pure P) -(persistent_absorbingly_affinely _ ⌝%I) absorbingly_sep_lr.
rewrite -persistent_and_affinely_sep_l. apply pure_elim_l=> ?. by rewrite HQ.
Qed.
Lemma tac_wand_intro_drop Δ P Q R :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment