Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
ea4d05c6
Commit
ea4d05c6
authored
3 years ago
by
Dan Frumin
Committed by
Robbert Krebbers
3 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Formulate `is_closed_expr` in terms of `gset`s.
And prove some additional lemmas.
parent
f6beee55
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris_heap_lang/metatheory.v
+77
-49
77 additions, 49 deletions
iris_heap_lang/metatheory.v
with
77 additions
and
49 deletions
iris_heap_lang/metatheory.v
+
77
−
49
View file @
ea4d05c6
From
stdpp
Require
Import
gmap
.
From
stdpp
Require
Import
gmap
stringmap
.
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
prelude
Require
Import
options
.
From
iris
.
prelude
Require
Import
options
.
(* This file contains some metatheory about the heap_lang language,
(* This file contains some metatheory about the heap_lang language,
which is not needed for verifying programs. *)
which is not needed for verifying programs. *)
(* Closed expressions and values. *)
(* Lifting `Insert` on strings to binders. *)
Fixpoint
is_closed_expr
(
X
:
list
string
)
(
e
:
expr
)
:
bool
:=
Local
Definition
set_binder_insert
(
x
:
binder
)
(
X
:
stringset
)
:
stringset
:=
match
x
with
|
BAnon
=>
X
|
BNamed
f
=>
{[
f
]}
∪
X
end
.
(* Check if expression [e] is closed w.r.t. the set [X] of variable names,
and that all the values in [e] are closed *)
Fixpoint
is_closed_expr
(
X
:
stringset
)
(
e
:
expr
)
:
bool
:=
match
e
with
match
e
with
|
Val
v
=>
is_closed_val
v
|
Val
v
=>
is_closed_val
v
|
Var
x
=>
bool_decide
(
x
∈
X
)
|
Var
x
=>
bool_decide
(
x
∈
X
)
|
Rec
f
x
e
=>
is_closed_expr
(
f
:
b
:
x
:
b
:
X
)
e
|
Rec
f
x
e
=>
is_closed_expr
(
set_binder_insert
f
(
set_binder_insert
x
X
)
)
e
|
UnOp
_
e
|
Fst
e
|
Snd
e
|
InjL
e
|
InjR
e
|
Fork
e
|
Free
e
|
Load
e
=>
|
UnOp
_
e
|
Fst
e
|
Snd
e
|
InjL
e
|
InjR
e
|
Fork
e
|
Free
e
|
Load
e
=>
is_closed_expr
X
e
is_closed_expr
X
e
|
App
e1
e2
|
BinOp
_
e1
e2
|
Pair
e1
e2
|
AllocN
e1
e2
|
Store
e1
e2
|
Xchg
e1
e2
|
FAA
e1
e2
=>
|
App
e1
e2
|
BinOp
_
e1
e2
|
Pair
e1
e2
|
AllocN
e1
e2
|
Store
e1
e2
|
Xchg
e1
e2
|
FAA
e1
e2
=>
...
@@ -22,19 +30,58 @@ Fixpoint is_closed_expr (X : list string) (e : expr) : bool :=
...
@@ -22,19 +30,58 @@ Fixpoint is_closed_expr (X : list string) (e : expr) : bool :=
with
is_closed_val
(
v
:
val
)
:
bool
:=
with
is_closed_val
(
v
:
val
)
:
bool
:=
match
v
with
match
v
with
|
LitV
_
=>
true
|
LitV
_
=>
true
|
RecV
f
x
e
=>
is_closed_expr
(
f
:
b
:
x
:
b
:
[]
)
e
|
RecV
f
x
e
=>
is_closed_expr
(
set_binder_insert
f
(
set_binder_insert
x
∅
)
)
e
|
PairV
v1
v2
=>
is_closed_val
v1
&&
is_closed_val
v2
|
PairV
v1
v2
=>
is_closed_val
v1
&&
is_closed_val
v2
|
InjLV
v
|
InjRV
v
=>
is_closed_val
v
|
InjLV
v
|
InjRV
v
=>
is_closed_val
v
end
.
end
.
(* Parallel substitution *)
Fixpoint
subst_map
(
vs
:
gmap
string
val
)
(
e
:
expr
)
:
expr
:=
match
e
with
|
Val
_
=>
e
|
Var
y
=>
if
vs
!!
y
is
Some
v
then
Val
v
else
Var
y
|
Rec
f
y
e
=>
Rec
f
y
(
subst_map
(
binder_delete
y
(
binder_delete
f
vs
))
e
)
|
App
e1
e2
=>
App
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
UnOp
op
e
=>
UnOp
op
(
subst_map
vs
e
)
|
BinOp
op
e1
e2
=>
BinOp
op
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
If
e0
e1
e2
=>
If
(
subst_map
vs
e0
)
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Pair
e1
e2
=>
Pair
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Fst
e
=>
Fst
(
subst_map
vs
e
)
|
Snd
e
=>
Snd
(
subst_map
vs
e
)
|
InjL
e
=>
InjL
(
subst_map
vs
e
)
|
InjR
e
=>
InjR
(
subst_map
vs
e
)
|
Case
e0
e1
e2
=>
Case
(
subst_map
vs
e0
)
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Fork
e
=>
Fork
(
subst_map
vs
e
)
|
AllocN
e1
e2
=>
AllocN
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Free
e
=>
Free
(
subst_map
vs
e
)
|
Load
e
=>
Load
(
subst_map
vs
e
)
|
Store
e1
e2
=>
Store
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Xchg
e1
e2
=>
Xchg
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
CmpXchg
e0
e1
e2
=>
CmpXchg
(
subst_map
vs
e0
)
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
FAA
e1
e2
=>
FAA
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
NewProph
=>
NewProph
|
Resolve
e0
e1
e2
=>
Resolve
(
subst_map
vs
e0
)
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
end
.
(* Properties *)
Local
Instance
SetUnfoldElemOf_insert_binder
x
y
X
Q
:
SetUnfoldElemOf
y
X
Q
→
SetUnfoldElemOf
y
(
set_binder_insert
x
X
)
(
Q
∨
BNamed
y
=
x
)
.
Proof
.
intros
H1
.
constructor
.
destruct
x
as
[|
x
];
set_solver
.
Qed
.
Lemma
is_closed_weaken
X
Y
e
:
is_closed_expr
X
e
→
X
⊆
Y
→
is_closed_expr
Y
e
.
Lemma
is_closed_weaken
X
Y
e
:
is_closed_expr
X
e
→
X
⊆
Y
→
is_closed_expr
Y
e
.
Proof
.
revert
X
Y
;
induction
e
;
naive_solver
(
eauto
;
set_solver
)
.
Qed
.
Proof
.
revert
X
Y
;
induction
e
;
naive_solver
(
eauto
;
set_solver
)
.
Qed
.
Lemma
is_closed_weaken_
nil
X
e
:
is_closed_expr
[]
e
→
is_closed_expr
X
e
.
Lemma
is_closed_weaken_
empty
X
e
:
is_closed_expr
∅
e
→
is_closed_expr
X
e
.
Proof
.
intros
.
by
apply
is_closed_weaken
with
[],
list
_subseteq
_nil
.
Qed
.
Proof
.
intros
.
by
apply
is_closed_weaken
with
∅
,
empty
_subseteq
.
Qed
.
Lemma
is_closed_subst
X
e
x
v
:
Lemma
is_closed_subst
X
e
y
v
:
is_closed_val
v
→
is_closed_expr
(
x
::
X
)
e
→
is_closed_expr
X
(
subst
x
v
e
)
.
is_closed_val
v
→
is_closed_expr
(
{[
y
]}
∪
X
)
e
→
is_closed_expr
X
(
subst
y
v
e
)
.
Proof
.
Proof
.
intros
Hv
.
revert
X
.
intros
Hv
.
revert
X
.
induction
e
=>
X
/=
?;
destruct_and
?;
split_and
?;
simplify_option_eq
;
induction
e
=>
X
/=
?;
destruct_and
?;
split_and
?;
simplify_option_eq
;
...
@@ -43,24 +90,24 @@ Proof.
...
@@ -43,24 +90,24 @@ Proof.
end
;
eauto
using
is_closed_weaken
with
set_solver
.
end
;
eauto
using
is_closed_weaken
with
set_solver
.
Qed
.
Qed
.
Lemma
is_closed_subst'
X
e
x
v
:
Lemma
is_closed_subst'
X
e
x
v
:
is_closed_val
v
→
is_closed_expr
(
x
:
b
:
X
)
e
→
is_closed_expr
X
(
subst'
x
v
e
)
.
is_closed_val
v
→
is_closed_expr
(
set_binder_insert
x
X
)
e
→
is_closed_expr
X
(
subst'
x
v
e
)
.
Proof
.
destruct
x
;
eauto
using
is_closed_subst
.
Qed
.
Proof
.
destruct
x
;
eauto
using
is_closed_subst
.
Qed
.
(* Substitution *)
Lemma
subst_is_closed
X
e
x
es
:
is_closed_expr
X
e
→
x
∉
X
→
subst
x
es
e
=
e
.
Lemma
subst_is_closed
X
e
x
es
:
is_closed_expr
X
e
→
x
∉
X
→
subst
x
es
e
=
e
.
Proof
.
Proof
.
revert
X
.
induction
e
=>
X
/=
;
rewrite
?bool_decide_spec
?andb_True
=>
??;
revert
X
.
induction
e
=>
X
/=
;
rewrite
?bool_decide_spec
?andb_True
=>
??;
repeat
case_decide
;
simplify_eq
/=
;
f_equal
;
intuition
eauto
with
set_solver
.
repeat
case_decide
;
simplify_eq
/=
;
f_equal
;
intuition
eauto
with
set_solver
.
Qed
.
Qed
.
Lemma
subst_is_closed_
nil
e
x
v
:
is_closed_expr
[]
e
→
subst
x
v
e
=
e
.
Lemma
subst_is_closed_
empty
e
x
v
:
is_closed_expr
∅
e
→
subst
x
v
e
=
e
.
Proof
.
intros
.
apply
subst_is_closed
with
[]
;
set_solver
.
Qed
.
Proof
.
intros
.
apply
subst_is_closed
with
(
∅:
stringset
)
;
set_solver
.
Qed
.
Lemma
subst_subst
e
x
v
v'
:
Lemma
subst_subst
e
x
v
v'
:
subst
x
v
(
subst
x
v'
e
)
=
subst
x
v'
e
.
subst
x
v
(
subst
x
v'
e
)
=
subst
x
v'
e
.
Proof
.
Proof
.
intros
.
induction
e
;
simpl
;
try
(
f_equal
;
by
auto
);
intros
.
induction
e
;
simpl
;
try
(
f_equal
;
by
auto
);
simplify_option_eq
;
auto
using
subst_is_closed_
nil
with
f_equal
.
simplify_option_eq
;
auto
using
subst_is_closed_
empty
with
f_equal
.
Qed
.
Qed
.
Lemma
subst_subst'
e
x
v
v'
:
Lemma
subst_subst'
e
x
v
v'
:
subst'
x
v
(
subst'
x
v'
e
)
=
subst'
x
v'
e
.
subst'
x
v
(
subst'
x
v'
e
)
=
subst'
x
v'
e
.
...
@@ -70,7 +117,7 @@ Lemma subst_subst_ne e x y v v' :
...
@@ -70,7 +117,7 @@ Lemma subst_subst_ne e x y v v' :
x
≠
y
→
subst
x
v
(
subst
y
v'
e
)
=
subst
y
v'
(
subst
x
v
e
)
.
x
≠
y
→
subst
x
v
(
subst
y
v'
e
)
=
subst
y
v'
(
subst
x
v
e
)
.
Proof
.
Proof
.
intros
.
induction
e
;
simpl
;
try
(
f_equal
;
by
auto
);
intros
.
induction
e
;
simpl
;
try
(
f_equal
;
by
auto
);
simplify_option_eq
;
auto
using
eq_sym
,
subst_is_closed_
nil
with
f_equal
.
simplify_option_eq
;
auto
using
eq_sym
,
subst_is_closed_
empty
with
f_equal
.
Qed
.
Qed
.
Lemma
subst_subst_ne'
e
x
y
v
v'
:
Lemma
subst_subst_ne'
e
x
y
v
v'
:
x
≠
y
→
subst'
x
v
(
subst'
y
v'
e
)
=
subst'
y
v'
(
subst'
x
v
e
)
.
x
≠
y
→
subst'
x
v
(
subst'
y
v'
e
)
=
subst'
y
v'
(
subst'
x
v
e
)
.
...
@@ -122,10 +169,10 @@ Qed.
...
@@ -122,10 +169,10 @@ Qed.
(* The stepping relation preserves closedness *)
(* The stepping relation preserves closedness *)
Lemma
head_step_is_closed
e1
σ1
obs
e2
σ2
es
:
Lemma
head_step_is_closed
e1
σ1
obs
e2
σ2
es
:
is_closed_expr
[]
e1
→
is_closed_expr
∅
e1
→
map_Forall
(
λ
_
v
,
from_option
is_closed_val
true
v
)
σ1
.(
heap
)
→
map_Forall
(
λ
_
v
,
from_option
is_closed_val
true
v
)
σ1
.(
heap
)
→
head_step
e1
σ1
obs
e2
σ2
es
→
head_step
e1
σ1
obs
e2
σ2
es
→
is_closed_expr
[]
e2
∧
Forall
(
is_closed_expr
[]
)
es
∧
is_closed_expr
∅
e2
∧
Forall
(
is_closed_expr
∅
)
es
∧
map_Forall
(
λ
_
v
,
from_option
is_closed_val
true
v
)
σ2
.(
heap
)
.
map_Forall
(
λ
_
v
,
from_option
is_closed_val
true
v
)
σ2
.(
heap
)
.
Proof
.
Proof
.
intros
Cl1
Clσ1
STEP
.
intros
Cl1
Clσ1
STEP
.
...
@@ -141,32 +188,6 @@ Proof.
...
@@ -141,32 +188,6 @@ Proof.
-
case_match
;
try
apply
map_Forall_insert_2
;
by
naive_solver
.
-
case_match
;
try
apply
map_Forall_insert_2
;
by
naive_solver
.
Qed
.
Qed
.
Fixpoint
subst_map
(
vs
:
gmap
string
val
)
(
e
:
expr
)
:
expr
:=
match
e
with
|
Val
_
=>
e
|
Var
y
=>
if
vs
!!
y
is
Some
v
then
Val
v
else
Var
y
|
Rec
f
y
e
=>
Rec
f
y
(
subst_map
(
binder_delete
y
(
binder_delete
f
vs
))
e
)
|
App
e1
e2
=>
App
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
UnOp
op
e
=>
UnOp
op
(
subst_map
vs
e
)
|
BinOp
op
e1
e2
=>
BinOp
op
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
If
e0
e1
e2
=>
If
(
subst_map
vs
e0
)
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Pair
e1
e2
=>
Pair
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Fst
e
=>
Fst
(
subst_map
vs
e
)
|
Snd
e
=>
Snd
(
subst_map
vs
e
)
|
InjL
e
=>
InjL
(
subst_map
vs
e
)
|
InjR
e
=>
InjR
(
subst_map
vs
e
)
|
Case
e0
e1
e2
=>
Case
(
subst_map
vs
e0
)
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Fork
e
=>
Fork
(
subst_map
vs
e
)
|
AllocN
e1
e2
=>
AllocN
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Free
e
=>
Free
(
subst_map
vs
e
)
|
Load
e
=>
Load
(
subst_map
vs
e
)
|
Store
e1
e2
=>
Store
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
Xchg
e1
e2
=>
Xchg
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
CmpXchg
e0
e1
e2
=>
CmpXchg
(
subst_map
vs
e0
)
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
FAA
e1
e2
=>
FAA
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
|
NewProph
=>
NewProph
|
Resolve
e0
e1
e2
=>
Resolve
(
subst_map
vs
e0
)
(
subst_map
vs
e1
)
(
subst_map
vs
e2
)
end
.
Lemma
subst_map_empty
e
:
subst_map
∅
e
=
e
.
Lemma
subst_map_empty
e
:
subst_map
∅
e
=
e
.
Proof
.
Proof
.
...
@@ -216,7 +237,6 @@ Proof.
...
@@ -216,7 +237,6 @@ Proof.
by
rewrite
subst_map_binder_insert_2
!
binder_delete_empty
subst_map_empty
.
by
rewrite
subst_map_binder_insert_2
!
binder_delete_empty
subst_map_empty
.
Qed
.
Qed
.
(* subst_map on closed expressions *)
Lemma
subst_map_is_closed
X
e
vs
:
Lemma
subst_map_is_closed
X
e
vs
:
is_closed_expr
X
e
→
is_closed_expr
X
e
→
(
∀
x
,
x
∈
X
→
vs
!!
x
=
None
)
→
(
∀
x
,
x
∈
X
→
vs
!!
x
=
None
)
→
...
@@ -227,8 +247,16 @@ Proof.
...
@@ -227,8 +247,16 @@ Proof.
x
∈
x2
:
b
:
x1
:
b
:
X
→
x
∈
x2
:
b
:
x1
:
b
:
X
→
binder_delete
x1
(
binder_delete
x2
vs
)
!!
x
=
None
)
.
binder_delete
x1
(
binder_delete
x2
vs
)
!!
x
=
None
)
.
{
intros
x
x1
x2
X
vs
??
.
rewrite
!
lookup_binder_delete_None
.
set_solver
.
}
{
intros
x
x1
x2
X
vs
??
.
rewrite
!
lookup_binder_delete_None
.
set_solver
.
}
induction
e
=>
X
vs
/=
?
HX
;
repeat
case_match
;
naive_solver
eauto
with
f_equal
.
induction
e
as
[|
|
f
x
e
IHe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|]=>
X
vs
/=
?
HX
.
3
:{
f_equal
.
eapply
IHe
;
eauto
.
intros
x0
Hx0
.
rewrite
!
lookup_binder_delete_None
.
set_solver
.
}
all
:
repeat
case_match
;
naive_solver
eauto
with
f_equal
.
Qed
.
Qed
.
Lemma
subst_map_is_closed_nil
e
vs
:
is_closed_expr
[]
e
→
subst_map
vs
e
=
e
.
Lemma
subst_map_is_closed_empty
e
vs
:
is_closed_expr
∅
e
→
subst_map
vs
e
=
e
.
Proof
.
intros
.
apply
subst_map_is_closed
with
[];
set_solver
.
Qed
.
Proof
.
intros
.
apply
subst_map_is_closed
with
∅
;
try
setoid_rewrite
elem_of_empty
;
set_solver
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment