Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
eb7c460b
Commit
eb7c460b
authored
10 years ago
by
David Swasey
Committed by
Ralf Jung
10 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Support rewriting under RA constructors; the rewrites in OrdTests, ExTests, AuthTests used to fail.
parent
b53816ac
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
lib/ModuRes/RA.v
+62
-13
62 additions, 13 deletions
lib/ModuRes/RA.v
with
62 additions
and
13 deletions
lib/ModuRes/RA.v
+
62
−
13
View file @
eb7c460b
(** Resource algebras: Commutative monoids with a validity predicate. *)
Require
Import
ssreflect
.
Require
Import
Coq
.
Classes
.
RelationPairs
.
Require
Import
Bool
.
Require
Import
Predom
.
Require
Import
CSetoid
.
...
...
@@ -189,7 +190,7 @@ End ProductLemmas.
Section
Order
.
Context
{
T
}
`{
raT
:
RA
T
}
.
Definition
ra_ord
t1
t2
:=
Let
ra_ord
t1
t2
:=
exists
t
,
t
·
t1
==
t2
.
Global
Instance
ra_ord_preo
:
PreOrder
ra_ord
.
...
...
@@ -200,13 +201,10 @@ Section Order.
rewrite
<-
Hxyz
,
<-
Hyz
;
symmetry
;
apply
assoc
.
Qed
.
Global
Program
Instance
ra_preo
:
preoType
T
:=
mkPOType
ra_ord
.
Global
Instance
equiv_pord_ra
:
Proper
(
equiv
==>
equiv
==>
equiv
)
(
pord
(
T
:=
T
))
.
Proof
.
intros
s1
s2
EQs
t1
t2
EQt
;
split
;
intros
[
s
HS
]
.
-
exists
s
;
rewrite
<-
EQs
,
<-
EQt
;
assumption
.
-
exists
s
;
rewrite
->
EQs
,
EQt
;
assumption
.
Global
Program
Instance
pord_ra
:
preoType
T
:=
mkPOType
ra_ord
_
.
Next
Obligation
.
move
=>
x1
x2
Rx
y1
y2
Ry
[
t
Ht
]
.
exists
t
;
by
rewrite
-
Rx
-
Ry
.
Qed
.
Global
Instance
ra_op_mono
:
Proper
(
pord
++>
pord
++>
pord
)
ra_op
.
...
...
@@ -215,6 +213,7 @@ Section Order.
rewrite
<-
assoc
,
(
comm
y
),
<-
assoc
,
assoc
,
(
comm
y1
),
EQx
,
EQy
;
reflexivity
.
Qed
.
(* PDS: Are we actually searching for validity proofs? *)
Global
Instance
ra_valid_ord
:
Proper
(
pord
==>
flip
impl
)
ra_valid
.
Proof
.
move
=>
t1
t2
[
t'
HEq
];
rewrite
-
HEq
;
exact
:
ra_op_valid2
.
Qed
.
...
...
@@ -228,14 +227,21 @@ Section Order.
by
apply
:
Hc
;
move
:
HEq
;
rewrite
assoc
-
[
t
·
_]
comm
-
assoc
.
Qed
.
End
Order
.
Arguments
equiv_pord_ra
{_
_
_
_
_
_}
{_
_}
_
{_
_}
_
.
Arguments
ra_op_mono
{_
_
_
_
_
_}
{_
_}
_
{_
_}
_
.
Arguments
ra_valid_ord
{_
_
_
_
_
_}
{_
_}
_
_
.
Section
OrdTests
.
Context
{
S
T
}
`{
raS
:
RA
S
,
raT
:
RA
T
}
.
Implicit
Types
(
s
:
S
)
(
t
:
T
)
.
Goal
forall
s1
s2
t
,
s1
==
s2
->
(
s1
,
t
)
⊑
(
s2
,
t
)
.
Proof
.
move
=>
s1
s2
t
->
.
reflexivity
.
Qed
.
End
OrdTests
.
(** The exclusive RA. *)
Section
Exclusive
.
Context
{
T
:
Type
}
`
{
eqT
:
Setoid
T
}
.
Context
{
T
:
Type
}
{
eqT
:
Setoid
T
}
.
Inductive
ex
:
Type
:=
|
ex_own
:
T
->
ex
...
...
@@ -264,6 +270,9 @@ Section Exclusive.
Global
Program
Instance
ra_type_ex
:
Setoid
ex
:=
mkType
ex_eq
.
Global
Instance
ex_own_compat
:
Proper
(
equiv
==>
equiv
)
ex_own
.
Proof
.
by
move
=>
t1
t2
EQt
.
Qed
.
Global
Instance
ra_unit_ex
:
RA_unit
_
:=
ex_unit
.
Global
Instance
ra_op_ex
:
RA_op
_
:=
fun
r
s
=>
...
...
@@ -310,6 +319,23 @@ Section Exclusive.
End
Exclusive
.
Arguments
ex
T
:
clear
implicits
.
Section
ExTests
.
Context
{
T
:
Type
}
{
eqT
:
Setoid
T
}
.
Implicit
Types
(
t
:
T
)
.
Goal
forall
t1
t2
,
t1
==
t2
->
ex_own
t1
==
ex_own
t2
.
Proof
.
move
=>
t1
t2
->
.
reflexivity
.
Qed
.
Context
{
U
}
`{
raU
:
RA
U
}
.
Implicit
Types
(
u
:
U
)
.
Goal
forall
t1
t2
u
,
t1
==
t2
->
(
ex_own
t1
,
u
)
⊑
(
ex_own
t2
,
u
)
.
Proof
.
move
=>
t1
t2
u
->
.
reflexivity
.
Qed
.
Goal
forall
t
u1
u2
,
u1
==
u2
->
(
ex_own
t
,
u1
)
==
(
ex_own
t
,
u2
)
.
Proof
.
move
=>
t
u1
u2
->
.
reflexivity
.
Qed
.
End
ExTests
.
(** The authoritative RA. *)
Section
Authoritative
.
Context
{
T
}
`{
raT
:
RA
T
}
.
...
...
@@ -318,7 +344,7 @@ Section Authoritative.
Implicit
Types
(
x
:
ex
T
)
(
g
t
u
:
T
)
(
r
s
:
auth
)
.
Definition
auth_eq
r
s
:
Prop
:=
Let
auth_eq
r
s
:
Prop
:=
match
r
,
s
with
|
Auth
p
,
Auth
p'
=>
p
==
p'
end
.
...
...
@@ -331,7 +357,17 @@ Section Authoritative.
-
by
move
=>
[
p1
]
[
p2
]
[
p3
];
rewrite
/
auth_eq
;
transitivity
p2
.
Qed
.
Global
Instance
ra_type_auth
:
Setoid
auth
:=
mkType
auth_eq
.
Section
Compat
.
Variable
R
:
relation
(
ex
T
*
T
)
.
Let
RA
:
relation
auth
:=
fun
r1
r2
=>
match
r1
,
r2
with
Auth
p1
,
Auth
p2
=>
R
p1
p2
end
.
Global
Instance
auth_compat
:
Proper
(
R
==>
RA
)
Auth
.
Proof
.
by
move
=>
p1
p2
Rp
.
Qed
.
End
Compat
.
Global
Instance
ra_unit_auth
:
RA_unit
auth
:=
Auth
(
ex_unit
,
1
)
.
Global
Instance
ra_op_auth
:
RA_op
auth
:=
fun
r
s
=>
...
...
@@ -353,7 +389,10 @@ Section Authoritative.
-
by
move
=>
[[
x1
t1
]]
[[
x2
t2
]]
/=
;
split
;
rewrite
comm
;
reflexivity
.
-
by
move
=>
[[
x
t
]]
/=
;
split
;
rewrite
ra_op_unit
;
reflexivity
.
-
move
=>
[[
x
t
]]
[[
x'
t'
]]
[
/=
Hx
Ht
]
.
move
:
Hx
;
case
:
x
=>[
g
||];
case
:
x'
=>[
g'
||]
=>
//=
Hg
;
rewrite
/
ra_valid
/
ra_valid_auth
Ht
;
[
by
rewrite
Hg
|
done
]
.
rewrite
/
ra_valid
/
ra_valid_auth
.
move
:
Hx
;
case
:
x
=>[
g
||];
case
:
x'
=>[
g'
||]
=>
//=
Hg
.
+
by
rewrite
Ht
Hg
.
+
by
rewrite
Ht
.
-
rewrite
/
ra_unit
/
ra_unit_auth
/
ra_valid
/
ra_valid_auth
;
exact
:
ra_valid_unit
.
-
move
=>
[[
x
t
]]
[[
x'
t'
]]
.
rewrite
/
ra_op
/
ra_op_auth
/
ra_valid
/
ra_valid_auth
.
case
:
x
=>[
g
||];
case
:
x'
=>[
g'
||]
//=.
...
...
@@ -417,6 +456,16 @@ Notation "• g" := (Auth (ex_own g,1)) (at level 48) : ra_scope.
Notation "∘ t" := (Auth (1,t)) (at level 48) : ra_scope.
*)
Section
AuthTests
.
Context
{
T
:
Type
}
`{
raT
:
RA
T
}
.
Implicit
Types
(
x
:
ex
T
)
(
t
:
T
)
.
Goal
forall
x
t1
t2
,
t1
==
t2
->
Auth
(
x
,
t1
)
==
Auth
(
x
,
t2
)
.
Proof
.
move
=>
x
t1
t2
EQt
.
rewrite
EQt
.
reflexivity
.
Qed
.
Goal
forall
x1
x2
t
,
x1
==
x2
->
Auth
(
x1
,
t
)
==
Auth
(
x2
,
t
)
.
Proof
.
move
=>
x1
x2
t
EQx
.
rewrite
EQx
.
reflexivity
.
Qed
.
End
AuthTests
.
Section
Agreement
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment