Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
Iris
Commits
f7d72048
Commit
f7d72048
authored
10 years ago
by
David Swasey
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of git.fp.mpi-sws.org:nowbook
parents
d994e178
2e710cc6
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
iris_vs_rules.v
+63
-33
63 additions, 33 deletions
iris_vs_rules.v
lib/ModuRes/PreoMet.v
+48
-2
48 additions, 2 deletions
lib/ModuRes/PreoMet.v
with
111 additions
and
35 deletions
iris_vs_rules.v
+
63
−
33
View file @
f7d72048
...
...
@@ -100,55 +100,85 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
subst
rri
.
rewrite
<-
HR
,
assoc
.
reflexivity
.
Qed
.
Lemma
vsTrans
P
Q
R
m1
m2
m3
(
HMS
:
m2
⊆
m1
∪
m3
)
:
vs
m1
m2
P
Q
∧
vs
m2
m3
Q
R
⊑
vs
m1
m3
P
R
.
Lemma
p
vsTrans
P
m1
m2
m3
(
HMS
:
m2
⊆
m1
∪
m3
)
:
p
vs
m1
m2
(
p
vs
m2
m3
P
)
⊑
p
vs
m1
m3
P
.
Proof
.
intros
w'
n
r1
[
Hpq
Hqr
]
w
HSub
;
specialize
(
Hpq
_
HSub
);
rewrite
->
HSub
in
Hqr
;
clear
w'
HSub
.
intros
np
rp
HLe
HS
Hp
w1
;
intros
;
specialize
(
Hpq
_
_
HLe
HS
Hp
)
.
edestruct
Hpq
as
[
w2
[
rq
[
HSw12
[
Hq
HEq
]
]
]
];
try
eassumption
;
[|]
.
intros
w0
n
r0
HP
w1
rf
mf
σ
k
HSub
Hnk
HD
HSat
.
destruct
(
HP
w1
rf
mf
σ
_
HSub
Hnk
)
as
(
w2
&
r2
&
HSub2
&
HP2
&
HSat2
);
[
|
by
auto
|
]
.
{
clear
-
HD
HMS
;
intros
j
[
Hmf
Hm12
];
apply
(
HD
j
);
split
;
[
assumption
|]
.
destruct
Hm12
as
[
Hm1
|
Hm2
];
[
left
;
assumption
|
apply
HMS
,
Hm2
]
.
}
rewrite
<-
HLe
,
HSub
in
Hqr
;
specialize
(
Hqr
_
HSw12
);
clear
Hpq
HE
w
HSub
Hp
.
edestruct
(
Hqr
(
S
k
)
_
HLe0
unit_min
Hq
w2
)
as
[
w3
[
rR
[
HSw23
[
Hr
HEr
]
]
]
];
try
(
reflexivity
||
eassumption
);
[
now
auto
with
arith
|
|]
.
destruct
(
HP2
w2
rf
mf
σ
k
)
as
(
w3
&
r3
&
HSub3
&
HP3
&
HSat3
);
[
reflexivity
|
omega
|
|
auto
|
]
.
{
clear
-
HD
HMS
;
intros
j
[
Hmf
Hm23
];
apply
(
HD
j
);
split
;
[
assumption
|]
.
destruct
Hm23
as
[
Hm2
|
Hm3
];
[
apply
HMS
,
Hm2
|
right
;
assumption
]
.
}
clear
HEq
Hq
HS
.
setoid_rewrite
HSw12
;
eauto
8
.
exists
w3
r3
;
split
;
[
by
rewrite
->
HSub2
|
by
split
]
.
Qed
.
Lemma
pvsEnt
P
m1
m2
(
HMS
:
m2
⊆
m1
)
:
P
⊑
pvs
m1
m2
P
.
Proof
.
intros
w0
n
r0
HP
w1
rf
mf
σ
k
HSub
Hnk
HD
HSat
.
exists
w1
r0
;
repeat
split
;
[
reflexivity
|
eapply
propsMWN
;
eauto
|
]
.
destruct
HSat
as
(
s
&
HSat
&
H
)
.
exists
s
;
split
;
first
by
auto
.
move
=>
i
[
/
HMS
|]
IN
;
eapply
H
;
[
by
left
|
by
right
]
.
Qed
.
Lemma
pvsImpl
P
Q
m1
m2
:
□
(
P
→
Q
)
∧
pvs
m1
m2
P
⊑
pvs
m1
m2
Q
.
Proof
.
move
=>
w0
n
r0
[
HPQ
HvsP
]
.
intros
w1
rf
mf
σ
k
HSub1
Hlt
HD
HSat
.
move
/
HvsP
:
HSat
=>
[|||
w2
[
r2
[
HSub2
[
/
HPQ
HQ
HSat
]]]];
try
eassumption
;
[]
.
do
2
!
eexists
;
split
;
[
exact
HSub2
|
split
;
[|
eassumption
]]
.
eapply
HQ
;
[
by
rewrite
->
HSub1
|
omega
|
exact
unit_min
]
.
Qed
.
Lemma
vsTrans
P
Q
R
m1
m2
m3
(
HMS
:
m2
⊆
m1
∪
m3
)
:
vs
m1
m2
P
Q
∧
vs
m2
m3
Q
R
⊑
vs
m1
m3
P
R
.
Proof
.
intros
w0
n0
r0
[
HPQ
HQR
]
w1
HSub
n1
r1
Hlt
_
HP
.
eapply
pvsTrans
;
eauto
.
eapply
pvsImpl
;
split
;
first
eapply
propsMWN
;
[
eassumption
|
eassumption
|
exact
HQR
|
]
.
eapply
HPQ
;
by
eauto
using
unit_min
.
Qed
.
Lemma
vsEnt
P
Q
m
:
□
(
P
→
Q
)
⊑
vs
m
m
P
Q
.
Proof
.
intros
w'
n
r1
Himp
w
HSub
;
rewrite
->
HSub
in
Himp
;
clear
w'
HSub
.
intros
np
rp
HLe
HS
Hp
w1
;
intros
.
exists
w1
rp
;
split
;
[
reflexivity
|
split
;
[|
assumption
]
]
.
eapply
Himp
;
[
assumption
|
now
eauto
with
arith
|
now
apply
unit_min
|
]
.
unfold
lt
in
HLe0
;
rewrite
->
HLe0
,
<-
HSub
;
assumption
.
move
=>
w0
n
r0
HPQ
w1
HSub
n1
r1
Hlt
_
/
(
HPQ
_
HSub
_
_
Hlt
)
HQ
.
eapply
pvsEnt
,
HQ
;
[
reflexivity
|
exact
unit_min
]
.
Qed
.
Lemma
pvsFrame
P
Q
m1
m2
mf
(
HDisj
:
mf
#
m1
∪
m2
)
:
pvs
m1
m2
P
*
Q
⊑
pvs
(
m1
∪
mf
)
(
m2
∪
mf
)
(
P
*
Q
)
.
Proof
.
move
=>
w0
n
r0
[
rp
[
rq
[
HEr
[
HvsP
HQ
]]]]
.
move
=>
w1
rf
mf1
σ
k
HSub1
Hlt
HD
HSat
.
edestruct
(
HvsP
w1
(
rq
·
rf
)
(
mf
∪
mf1
))
as
(
w2
&
r2
&
HSub2
&
HP
&
HSat2
);
eauto
.
-
(* disjointness of masks: possible lemma *)
clear
-
HD
HDisj
;
intros
i
[
[
Hmf
|
Hmf
]
[
Hm1
|
Hm2
]];
by
firstorder
.
-
rewrite
assoc
HEr
.
eapply
wsat_equiv
;
last
eassumption
;
[|
reflexivity
|
reflexivity
]
.
unfold
mcup
in
*
;
split
;
intros
i
;
tauto
.
-
exists
w2
(
r2
·
rq
);
split
;
[
eassumption
|
split
;
[|]]
.
do
2
!
eexists
;
split
;
[
reflexivity
|
split
;
[
assumption
|]]
.
*
eapply
propsMWN
;
last
eassumption
;
[
by
rewrite
<-
HSub2
|
omega
]
.
*
setoid_rewrite
<-
ra_op_assoc
.
eapply
wsat_equiv
;
last
eassumption
;
[|
reflexivity
|
reflexivity
]
.
unfold
mcup
in
*
;
split
;
intros
i
;
tauto
.
Qed
.
Lemma
vsFrame
P
Q
R
m1
m2
mf
(
HDisj
:
mf
#
m1
∪
m2
)
:
vs
m1
m2
P
Q
⊑
vs
(
m1
∪
mf
)
(
m2
∪
mf
)
(
P
*
R
)
(
Q
*
R
)
.
Proof
.
intros
w'
n
r1
HVS
w
HSub
;
specialize
(
HVS
_
HSub
);
clear
w'
r1
HSub
.
intros
np
rpr
HLe
_
[
rp
[
rr
[
HR
[
Hp
Hr
]
]
]
]
w'
;
intros
.
assert
(
HS
:
ra_unit
_
⊑
rp
)
by
(
eapply
unit_min
)
.
specialize
(
HVS
_
_
HLe
HS
Hp
w'
(
rr
·
rf
)
(
mf
∪
mf0
)
σ
k
);
clear
HS
.
destruct
HVS
as
[
w''
[
rq
[
HSub'
[
Hq
HEq
]
]
]
];
try
assumption
;
[|
|]
.
-
(* disjointness of masks: possible lemma *)
clear
-
HD
HDisj
;
intros
i
[
[
Hmf
|
Hmf
]
Hm12
];
[
eapply
HDisj
;
now
eauto
|]
.
unfold
mcup
in
*
;
eapply
HD
;
split
;
[
eassumption
|
tauto
]
.
-
rewrite
->
assoc
,
HR
;
eapply
wsat_equiv
,
HE
;
try
reflexivity
;
[]
.
clear
;
intros
i
;
unfold
mcup
;
tauto
.
-
rewrite
->
assoc
in
HEq
.
exists
w''
(
rq
·
rr
)
.
split
;
[
assumption
|
split
]
.
+
unfold
lt
in
HLe0
;
rewrite
->
HSub
,
HSub'
,
<-
HLe0
in
Hr
;
exists
rq
rr
.
split
;
now
auto
.
+
eapply
wsat_equiv
,
HEq
;
try
reflexivity
;
[]
.
clear
;
intros
i
;
unfold
mcup
;
tauto
.
intros
w0
n0
r0
HVS
w1
HSub
n1
r1
Hlt
_
[
r21
[
r22
[
HEr
[
HP
HR
]]]]
.
eapply
pvsFrame
;
first
assumption
.
eapply
HVS
in
HP
;
eauto
using
unit_min
;
[]
.
do
2
!
eexists
;
split
;
last
split
;
eauto
.
Qed
.
Instance
LP_res
(
P
:
RL
.
res
->
Prop
)
:
LimitPreserving
P
.
...
...
This diff is collapsed.
Click to expand it.
lib/ModuRes/PreoMet.v
+
48
−
2
View file @
f7d72048
Require
Export
Predom
MetricCore
.
Generalizable
Variables
T
U
V
W
.
Generalizable
Variables
T
U
V
W
X
Y
.
Section
PreCBUmet
.
Context
(
T
:
Type
)
`{
cmT
:
cmetric
T
}
.
...
...
@@ -385,9 +385,38 @@ Section Extras.
Context
`{
pT
:
pcmType
T
}
`{
pU
:
pcmType
U
}
`{
pV
:
pcmType
V
}
`{
pW
:
pcmType
W
}
.
Definition
pcmprod_map
(
f
:
T
-
m
>
U
)
(
g
:
V
-
m
>
W
)
:=
〈
f
∘
π₁
,
g
∘
π₂
〉
.
Global
Instance
pcmprod_map_resp
:
Proper
(
equiv
==>
equiv
==>
equiv
)
pcmprod_map
.
Proof
.
intros
f
g
H1
h
j
H2
[
t1
v1
];
simpl
;
now
rewrite
H1
,
H2
.
Qed
.
Global
Instance
pcmprod_map_nonexp
n
:
Proper
(
dist
n
==>
dist
n
==>
dist
n
)
pcmprod_map
.
Proof
.
intros
f
g
H1
h
j
H2
[
t1
v1
];
split
;
simpl
;
[
rewrite
H1
|
rewrite
H2
];
reflexivity
.
Qed
.
Global
Instance
pcmprod_map_monic
:
Proper
(
pord
==>
pord
==>
pord
)
pcmprod_map
.
Proof
.
intros
f
g
H1
h
j
H2
[
t1
v1
];
split
;
simpl
;
[
rewrite
H1
|
rewrite
H2
];
reflexivity
.
Qed
.
Program
Definition
pcmconst
u
:
T
-
m
>
U
:=
mkMUMorph
(
umconst
u
)
_
.
End
Extras
.
Section
Instances
.
Local
Open
Scope
pumet_scope
.
Local
Obligation
Tactic
:=
intros
;
apply
_
||
mono_resp
||
program_simpl
.
Context
`{
pT
:
pcmType
T
}
`{
pU
:
pcmType
U
}
`{
pV
:
pcmType
V
}
`{
pW
:
pcmType
W
}
.
Lemma
pcmprod_map_id
:
pcmprod_map
(
pid
T
)
(
pid
U
)
==
pid
_
.
Proof
.
simpl
.
repeat
intro
;
split
;
reflexivity
.
Qed
.
Context
`{
pX
:
pcmType
Y
}
`{
pY
:
pcmType
X
}
{
f
:
T
-
m
>
U
}
{
g
:
V
-
m
>
W
}
{
h
:
X
-
m
>
T
}
{
j
:
Y
-
m
>
V
}
.
Lemma
pcmprod_map_comp
:
((
pcmprod_map
f
g
)
∘
(
pcmprod_map
h
j
))
%
pm
==
(
pcmprod_map
(
f
∘
h
)
(
g
∘
j
))
%
pm
.
Proof
.
intros
[
x
y
];
reflexivity
.
Qed
.
End
Instances
.
Notation
"f × g"
:=
(
pcmprod_map
f
g
)
(
at
level
40
,
left
associativity
)
:
pumet_scope
.
...
...
@@ -619,3 +648,20 @@ Section ExtOrdDiscrete.
Qed
.
End
ExtOrdDiscrete
.
Section
ExtProd
.
Context
T
U
`{
ET
:
extensible
T
}
`{
EU
:
extensible
U
}
.
Global
Instance
prod_extensible
:
extensible
(
T
*
U
)
:=
mkExtend
(
fun
s
s'
=>
pair
(
extend
(
fst
s
)
(
fst
s'
))
(
extend
(
snd
s
)
(
snd
s'
)))
.
Proof
.
-
intros
n
[
v1
v2
]
[
vd1
vd2
]
[
ve1
ve2
]
[
E1
E2
]
[
S1
S2
]
.
split
.
+
eapply
(
extend_dist
n
_
_
_
E1
S1
)
.
+
eapply
(
extend_dist
n
_
_
_
E2
S2
)
.
-
intros
n
[
v1
v2
]
[
vd1
vd2
]
[
ve1
ve2
]
[
E1
E2
]
[
S1
S2
]
.
split
.
+
eapply
(
extend_sub
n
_
_
_
E1
S1
)
.
+
eapply
(
extend_sub
n
_
_
_
E2
S2
)
.
Qed
.
End
ExtProd
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment