Skip to content
Snippets Groups Projects
Commit f8ba3a6b authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

State `internal_eq_rewrite` in the logic.

This way, it can be used with `iApply`.
parent 17b8c662
No related branches found
No related tags found
No related merge requests found
......@@ -85,6 +85,8 @@ sed 's/\bPersistentP\b/Persistent/g; s/\bTimelessP\b/Timeless/g; s/\bCMRADiscret
of evars, which often led to divergence. There are a few places where type
annotations are now needed.
* Move the `prelude` folder to its own project: std++
* The rules `internal_eq_rewrite` and `internal_eq_rewrite_contractive` are now
stated in the logic, i.e. they are `iApply` friendly.
## Iris 3.0.0 (released 2017-01-11)
......
......@@ -298,13 +298,19 @@ Hint Resolve internal_eq_refl'.
Lemma equiv_internal_eq {A : ofeT} P (a b : A) : a b P a b.
Proof. by intros ->. Qed.
Lemma internal_eq_sym {A : ofeT} (a b : A) : a b b a.
Proof. apply (internal_eq_rewrite a b (λ b, b a)%I); auto. solve_proper. Qed.
Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A uPred M) P
{ : Contractive Ψ} : (P (a b)) (P Ψ a) P Ψ b.
Proof.
move: => /contractiveI Heq ?.
apply (internal_eq_rewrite (Ψ a) (Ψ b) id _)=>//=. by rewrite -.
rewrite (internal_eq_rewrite a b (λ b, b a)%I ltac:(solve_proper)).
by rewrite -internal_eq_refl True_impl.
Qed.
Lemma f_equiv {A B : ofeT} (f : A B) `{!NonExpansive f} x y :
x y f x f y.
Proof.
rewrite (internal_eq_rewrite x y (λ y, f x f y)%I ltac:(solve_proper)).
by rewrite -internal_eq_refl True_impl.
Qed.
Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A uPred M)
{ : Contractive Ψ} : (a b) Ψ a Ψ b.
Proof. move: => /contractiveI ->. by rewrite (internal_eq_rewrite _ _ id). Qed.
Lemma pure_impl_forall φ P : (φ P) ⊣⊢ ( _ : φ, P).
Proof.
......@@ -345,8 +351,8 @@ Lemma equiv_iff P Q : (P ⊣⊢ Q) → (P ↔ Q)%I.
Proof. intros ->; apply iff_refl. Qed.
Lemma internal_eq_iff P Q : P Q P Q.
Proof.
apply (internal_eq_rewrite P Q (λ Q, P Q))%I;
first solve_proper; auto using iff_refl.
rewrite (internal_eq_rewrite P Q (λ Q, P Q)%I ltac:(solve_proper)).
by rewrite -(iff_refl True) True_impl.
Qed.
(* Derived BI Stuff *)
......@@ -531,9 +537,8 @@ Qed.
Lemma plainly_internal_eq {A:ofeT} (a b : A) : (a b) ⊣⊢ a b.
Proof.
apply (anti_symm ()); auto using persistently_elim.
apply (internal_eq_rewrite a b (λ b, (a b))%I); auto.
{ intros n; solve_proper. }
rewrite -(internal_eq_refl a) plainly_pure; auto.
rewrite {1}(internal_eq_rewrite a b (λ b, (a b))%I ltac:(solve_proper)).
by rewrite -internal_eq_refl plainly_pure True_impl.
Qed.
Lemma plainly_and_sep_l_1 P Q : P Q P Q.
......@@ -946,8 +951,8 @@ Global Instance ownM_timeless (a : M) : Discrete a → Timeless (uPred_ownM a).
Proof.
intros ?. rewrite /Timeless later_ownM. apply exist_elim=> b.
rewrite (timelessP (ab)) (except_0_intro (uPred_ownM b)) -except_0_and.
apply except_0_mono. rewrite internal_eq_sym.
apply (internal_eq_rewrite b a (uPred_ownM)); first apply _; auto.
apply except_0_mono. rewrite internal_eq_sym. apply impl_elim_r'.
apply: internal_eq_rewrite.
Qed.
Global Instance from_option_timeless {A} P (Ψ : A uPred M) (mx : option A) :
( x, Timeless (Ψ x)) Timeless P Timeless (from_option Ψ P mx).
......
......@@ -273,7 +273,7 @@ Proof.
iExists γ1, γ2. iIntros "{$% $#} !>". iSplit; last iSplit; try iPureIntro.
{ by eapply lookup_insert_None. }
{ by apply (lookup_insert_None (delete γ f) γ1 γ2 true). }
iNext. eapply internal_eq_rewrite_contractive; [by apply _| |by eauto].
iNext. iApply (internal_eq_rewrite_contractive with "[#] Hbox").
iNext. iRewrite "Heq". iPureIntro. by rewrite assoc (comm _ Q2).
- iMod (slice_delete_empty with "Hslice Hbox") as (P') "[Heq Hbox]"; try done.
iMod (slice_insert_empty with "Hbox") as (γ1 ?) "[#Hslice1 Hbox]".
......@@ -281,7 +281,7 @@ Proof.
iExists γ1, γ2. iIntros "{$% $#} !>". iSplit; last iSplit; try iPureIntro.
{ by eapply lookup_insert_None. }
{ by apply (lookup_insert_None (delete γ f) γ1 γ2 false). }
iNext. eapply internal_eq_rewrite_contractive; [by apply _| |by eauto].
iNext. iApply (internal_eq_rewrite_contractive with "[#] Hbox").
iNext. iRewrite "Heq". iPureIntro. by rewrite assoc (comm _ Q2).
Qed.
......@@ -298,14 +298,14 @@ Proof.
iMod (slice_insert_full _ _ _ _ (Q1 Q2)%I with "[$HQ1 $HQ2] Hbox")
as (γ ?) "[#Hslice Hbox]"; first done.
iExists γ. iIntros "{$% $#} !>". iNext.
eapply internal_eq_rewrite_contractive; [by apply _| |by eauto].
iApply (internal_eq_rewrite_contractive with "[#] Hbox").
iNext. iRewrite "Heq1". iRewrite "Heq2". by rewrite assoc.
- iMod (slice_delete_empty with "Hslice1 Hbox") as (P1) "(Heq1 & Hbox)"; try done.
iMod (slice_delete_empty with "Hslice2 Hbox") as (P2) "(Heq2 & Hbox)"; first done.
{ by simplify_map_eq. }
iMod (slice_insert_empty with "Hbox") as (γ ?) "[#Hslice Hbox]".
iExists γ. iIntros "{$% $#} !>". iNext.
eapply internal_eq_rewrite_contractive; [by apply _| |by eauto].
iApply (internal_eq_rewrite_contractive with "[#] Hbox").
iNext. iRewrite "Heq1". iRewrite "Heq2". by rewrite assoc.
Qed.
End box.
......
......@@ -152,6 +152,5 @@ Lemma iProp_unfold_equivI {Σ} (P Q : iProp Σ) :
iProp_unfold P iProp_unfold Q (P Q : iProp Σ).
Proof.
rewrite -{2}(iProp_fold_unfold P) -{2}(iProp_fold_unfold Q).
eapply (uPred.internal_eq_rewrite _ _ (λ z,
iProp_fold (iProp_unfold P) iProp_fold z))%I; auto with I; solve_proper.
apply: uPred.f_equiv.
Qed.
......@@ -43,8 +43,6 @@ Section saved_prop.
assert ( z, G2 (G1 z) z) as help.
{ intros z. rewrite /G1 /G2 -cFunctor_compose -{2}[z]cFunctor_id.
apply (ne_proper (cFunctor_map F)); split=>?; apply iProp_fold_unfold. }
rewrite -{2}[x]help -{2}[y]help. apply later_mono.
apply (internal_eq_rewrite (G1 x) (G1 y) (λ z, G2 (G1 x) G2 z))%I;
first solve_proper; auto with I.
rewrite -{2}[x]help -{2}[y]help. apply later_mono, f_equiv, _.
Qed.
End saved_prop.
......@@ -395,13 +395,9 @@ Proof. unseal; intros HΦΨ; split=> n x ? [a ?]; by apply HΦΨ with a. Qed.
Lemma internal_eq_refl {A : ofeT} (a : A) : uPred_valid (M:=M) (a a).
Proof. unseal; by split=> n x ??; simpl. Qed.
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A uPred M) P
{ : NonExpansive Ψ} : (P a b) (P Ψ a) P Ψ b.
Proof.
unseal; intros Hab Ha; split=> n x ??. apply with n a; auto.
- by symmetry; apply Hab with x.
- by apply Ha.
Qed.
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A uPred M) :
NonExpansive Ψ a b Ψ a Ψ b.
Proof. intros . unseal; split=> n x ?? n' x' ??? Ha. by apply with n a. Qed.
(* BI connectives *)
Lemma sep_mono P P' Q Q' : (P Q) (P' Q') P P' Q Q'.
......
......@@ -770,12 +770,14 @@ Lemma tac_rewrite Δ i p Pxy d Q :
{A : ofeT} (x y : A) (Φ : A uPred M),
(Pxy x y)
(Q ⊣⊢ Φ (if d is Left then y else x))
(NonExpansive Φ)
NonExpansive Φ
(Δ Φ (if d is Left then x else y)) Δ Q.
Proof.
intros ? A x y ? HPxy -> ?; apply internal_eq_rewrite; auto.
rewrite {1}envs_lookup_sound' //; rewrite sep_elim_l HPxy.
destruct d; auto using internal_eq_sym.
intros ? A x y Φ HPxy -> ? .
rewrite -(idemp ()%I (of_envs Δ)) {1}envs_lookup_sound' //.
rewrite sep_elim_l HPxy . apply impl_elim_l'. destruct d.
- by apply internal_eq_rewrite.
- rewrite internal_eq_sym. by apply internal_eq_rewrite.
Qed.
Lemma tac_rewrite_in Δ i p Pxy j q P d Q :
......@@ -784,20 +786,19 @@ Lemma tac_rewrite_in Δ i p Pxy j q P d Q :
{A : ofeT} Δ' x y (Φ : A uPred M),
(Pxy x y)
(P ⊣⊢ Φ (if d is Left then y else x))
(NonExpansive Φ)
NonExpansive Φ
envs_simple_replace j q (Esnoc Enil j (Φ (if d is Left then x else y))) Δ = Some Δ'
(Δ' Q) Δ Q.
Proof.
intros ?? A Δ' x y Φ HPxy HP ?? <-.
rewrite -(idemp uPred_and Δ) {2}(envs_lookup_sound' _ i) //.
rewrite -(idemp uPred_and (of_envs Δ)) {2}(envs_lookup_sound' _ i) //.
rewrite sep_elim_l HPxy and_sep_r.
rewrite (envs_simple_replace_sound _ _ j) //; simpl.
rewrite HP right_id -assoc; apply wand_elim_r'. destruct d.
- apply (internal_eq_rewrite x y (λ y, ?q Φ y -∗ Δ')%I);
eauto with I. solve_proper.
- apply (internal_eq_rewrite y x (λ y, ?q Φ y -∗ Δ')%I);
eauto using internal_eq_sym with I.
solve_proper.
rewrite HP right_id -assoc (sep_and _ (_ _)).
apply wand_elim_r', impl_elim_r'. destruct d.
- apply (internal_eq_rewrite _ _ (λ y, ?q Φ y -∗ _)%I). solve_proper.
- rewrite internal_eq_sym.
apply (internal_eq_rewrite _ _ (λ y, ?q Φ y -∗ _)%I). solve_proper.
Qed.
(** * Conjunction splitting *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment